Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (162)
  • Open Access

    ARTICLE

    Numerical Investigation of the Thermal Behavior of a System with a Partition Wall Incorporating a Phase Change Material

    Nisrine Hanchi*, Hamid Hamza, Jawad Lahjomri, Khalid Zniber, Abdelaziz Oubarra

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1227-1236, 2023, DOI:10.32604/fdmp.2023.022530 - 30 November 2022

    Abstract The work deals with the thermal behavior of a conventional partition wall incorporating a phase change material (PCM). The wall separates two environments with different thermal properties. The first one is conditioned, while the adjacent space is characterized by a temperature that changes sinusoidally in time. The effect of the PCM is assessed through a comparative analysis of the cases with and without PCM. The performances are evaluated in terms of dimensionless energy stored within the wall, comfort temperature and variations of these quantities as a function of the amount of PCM and its emplacement. More >

  • Open Access

    ARTICLE

    Quantification of Ride Comfort Using Musculoskeletal Mathematical Model Considering Vehicle Behavior

    Junya Tanehashi1, Szuchi Chang2, Takahiro Hirosei3, Masaki Izawa2, Aman Goyal2, Ayumi Takahashi4, Kazuhito Misaji4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2287-2306, 2023, DOI:10.32604/cmes.2023.022432 - 23 November 2022

    Abstract This research aims to quantify driver ride comfort due to changes in damper characteristics between comfort mode and sport mode, considering the vehicle’s inertial behavior. The comfort of riding in an automobile has been evaluated in recent years on the basis of a subjective sensory evaluation given by the driver. However, reflecting driving sensations in design work to improve ride comfort is abstract in nature and difficult to express theoretically. Therefore, we evaluated the human body’s effects while driving scientifically by quantifying the driver’s behavior while operating the steering wheel and the behavior of the… More > Graphic Abstract

    Quantification of Ride Comfort Using Musculoskeletal Mathematical Model Considering Vehicle Behavior

  • Open Access

    ARTICLE

    Profiling of Urban Noise Using Artificial Intelligence

    Le Quang Thao1,2,*, Duong Duc Cuong2, Tran Thi Tuong Anh3, Tran Duc Luong4

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1309-1321, 2023, DOI:10.32604/csse.2023.031010 - 03 November 2022

    Abstract Noise pollution tends to receive less awareness compared to other types of pollution, however, it greatly impacts the quality of life for humans such as causing sleep disruption, stress or hearing impairment. Profiling urban sound through the identification of noise sources in cities could help to benefit livability by reducing exposure to noise pollution through methods such as noise control, planning of the soundscape environment, or selection of safe living space. In this paper, we proposed a self-attention long short-term memory (LSTM) method that can improve sound classification compared to previous baselines. An attention mechanism… More >

  • Open Access

    ARTICLE

    Numerical Study on the Combined Use of Corten Steel and Phase Change Materials in Container-Type Houses

    Feriel Mustapha1,2,*, Marwa El Yassi1,2, Ikram El Abbassi1,2, Abdelhak Kaci2, Elhadj Kadri2, A-Moumen Darcherif3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 953-958, 2023, DOI:10.32604/fdmp.2022.022028 - 02 November 2022

    Abstract A study is presented on the feasibility of an approach based on the combination of Phase Change Materials (PCM) with metal walls in container-type houses. This line of research finds its motivations in recent trends in the energy and building sectors about energy consumption reduction. Another important objective concerns possible improvements in the comfort provided by such houses during the summer period. The results obtained through numerical solution of the governing equations accounting for heat transfer and latent heat effects associated with the PCM show that the indoor temperature can be reduced with a varying More >

  • Open Access

    ARTICLE

    Optimization of a Solar Chimney with a Horizontal Absorber for Building Ventilation: A Case Study

    El Hadji I Cisse1,*, Baye Alioune Ndiogou1,2, Soumaïla Tigampo1, Ababacar Thiam1,3, Dorothé Azilinon1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 901-910, 2023, DOI:10.32604/fdmp.2022.021973 - 02 November 2022

    Abstract A study is conducted to optimize the geometry of a solar chimney equipped with a horizontal absorber in order to improve its performances in relation to the provision of ventilation. The problem is tackled through numerical solution of the governing equations for mass, momentum and energy in their complete three-dimensional and unsteady formulation. The numerical framework also includes a turbulence model (k-ε) and a radiant heat transfer (DO) model. Moreover, a Multi-Objective Genetic Algorithm (MOGA) is employed to derive the optimal configuration of the considered solar chimney. It is shown that an air velocity of More >

  • Open Access

    ARTICLE

    The Impact of Sun Radiation on the Thermal Comfort in Highly Glazed Buildings Equipped with Floor Heating Systems

    Abdelatif Merabtine1,*, Abdelhamid Kheiri2, Salim Mokraoui3, Lyes Bellagh1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 941-951, 2023, DOI:10.32604/fdmp.2023.022029 - 02 November 2022

    Abstract Occupants of highly glazed buildings often suffer from thermal discomfort during the mid-seasons when no shadings are used in such buildings, especially when inertial heating systems are used. The present study is devoted to evaluating the impact of long solar beam exposure on the internal thermal discomfort in glazed spaces when heating is implemented through a floor system. A comprehensive experimental study is carried out using an experimental bi-climatic chamber which is fully monitored and controlled, allowing realistic simulations of the dynamic movement of the sun patch on a heated slab. The findings show that More >

  • Open Access

    REVIEW

    Challenges and Limitations in Speech Recognition Technology: A Critical Review of Speech Signal Processing Algorithms, Tools and Systems

    Sneha Basak1, Himanshi Agrawal1, Shreya Jena1, Shilpa Gite2,*, Mrinal Bachute2, Biswajeet Pradhan3,4,5,*, Mazen Assiri4

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1053-1089, 2023, DOI:10.32604/cmes.2022.021755 - 27 October 2022

    Abstract Speech recognition systems have become a unique human-computer interaction (HCI) family. Speech is one of the most naturally developed human abilities; speech signal processing opens up a transparent and hand-free computation experience. This paper aims to present a retrospective yet modern approach to the world of speech recognition systems. The development journey of ASR (Automatic Speech Recognition) has seen quite a few milestones and breakthrough technologies that have been highlighted in this paper. A step-by-step rundown of the fundamental stages in developing speech recognition systems has been presented, along with a brief discussion of various More >

  • Open Access

    ARTICLE

    Two-Stage Low-Carbon Economic Dispatch of Integrated Demand Response-Enabled Integrated Energy System with Ladder-Type Carbon Trading

    Song Zhang1, Wensheng Li2, Zhao Li2, Xiaolei Zhang1, Zhipeng Lu1, Xiaoning Ge3,*

    Energy Engineering, Vol.120, No.1, pp. 181-199, 2023, DOI:10.32604/ee.2022.022228 - 27 October 2022

    Abstract Driven by the goal of “carbon neutrality” and “emission peak”, effectively controlling system carbon emissions has become significantly important to governments around the world. To this end, a novel two-stage low-carbon economic scheduling framework that considers the coordinated optimization of ladder-type carbon trading and integrated demand response (IDR) is proposed in this paper for the integrated energy system (IES), where the first stage determines the energy consumption plan of users by leveraging the price-based electrical-heat IDR. In contrast, the second stage minimizes the system total cost to optimize the outputs of generations with consideration of More >

  • Open Access

    ARTICLE

    The Application of Fertilizer and AMF Promotes Growth and Reduces the Cadmium and Lead Contents of Ryegrass (Lolium multiflorum L.) in a Copper Mining Area

    Jiaxin Chen1,#, Jiawei Guo1,#, Zhixin Yang1, Jiqing Yang2,*, Hengwen Dong3, Huiyun Wang3, Yalei Wang3, Fangdong Zhan1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.2, pp. 471-485, 2023, DOI:10.32604/phyton.2022.023660 - 12 October 2022

    Abstract Heavy metal-polluted soil was collected from the Pulang copper mine in Shangri-La City, Yunnan Province, Southwest China. The effects of fertilizer (organic and inorganic) and arbuscular mycorrhizal fungi (AMF) on ryegrass (Lolium multiflorum L.) growth, root morphology, mineral nutrition and cadmium (Cd) and lead (Pb) contents were investigated by pot experiments. The results showed that both fertilizer and AMF significantly ameliorated the root morphology and mineral nutrition, reduced the Cd and Pb contents, and promoted the growth of ryegrass. Among all treatments, the combined application of organic–inorganic compound fertilizer with AMF had the highest effect, resulting… More >

  • Open Access

    ARTICLE

    Automatic Detection of Outliers in Multi-Channel EMG Signals Using MFCC and SVM

    Muhammad Irfan1, Khalil Ullah2, Fazal Muhammad3,*, Salman Khan3, Faisal Althobiani4, Muhammad Usman5, Mohammed Alshareef4, Shadi Alghaffari4, Saifur Rahman1

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 169-181, 2023, DOI:10.32604/iasc.2023.032337 - 29 September 2022

    Abstract The automatic detection of noisy channels in surface Electromyogram (sEMG) signals, at the time of recording, is very critical in making a noise-free EMG dataset. If an EMG signal contaminated by high-level noise is recorded, then it will be useless and can’t be used for any healthcare application. In this research work, a new machine learning-based paradigm is proposed to automate the detection of low-level and high-level noises occurring in different channels of high density and multi-channel sEMG signals. A modified version of mel frequency cepstral coefficients (mMFCC) is proposed for the extraction of features… More >

Displaying 41-50 on page 5 of 162. Per Page