Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5,839)
  • Open Access

    ARTICLE

    Pore-Scale Simulations to Enhance Development Strategies in Offshore Weak Water-Drive Reservoirs

    Xianke He1, Yuansheng Li1, Hengjie Liao1, Zhehao Jiang1, Meixue Shi1, Zhe Hu2,3, Yaowei Huang2,3, Keliu Wu2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.074990 - 06 February 2026

    Abstract Weak water-drive offshore reservoirs with complex pore architecture and strong permeability heterogeneity present major challenges, including rapid depletion of formation energy, low waterflood efficiency, and significant lateral and vertical variability in crude oil properties, all of which contribute to limited recovery. To support more effective field development, alternative strategies and a deeper understanding of pore-scale flow behavior are urgently needed. In this work, CT imaging and digital image processing were used to construct a digital rock model representative of the target reservoir. A pore-scale flow model was then developed, and the Volume of Fluid (VOF)… More > Graphic Abstract

    Pore-Scale Simulations to Enhance Development Strategies in Offshore Weak Water-Drive Reservoirs

  • Open Access

    ARTICLE

    YOLO-SPDNet: Multi-Scale Sequence and Attention-Based Tomato Leaf Disease Detection Model

    Meng Wang1, Jinghan Cai1, Wenzheng Liu1, Xue Yang1, Jingjing Zhang1, Qiangmin Zhou1, Fanzhen Wang1, Hang Zhang1,*, Tonghai Liu2,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2025.075541 - 30 January 2026

    Abstract Tomato is a major economic crop worldwide, and diseases on tomato leaves can significantly reduce both yield and quality. Traditional manual inspection is inefficient and highly subjective, making it difficult to meet the requirements of early disease identification in complex natural environments. To address this issue, this study proposes an improved YOLO11-based model, YOLO-SPDNet (Scale Sequence Fusion, Position-Channel Attention, and Dual Enhancement Network). The model integrates the SEAM (Self-Ensembling Attention Mechanism) semantic enhancement module, the MLCA (Mixed Local Channel Attention) lightweight attention mechanism, and the SPA (Scale-Position-Detail Awareness) module composed of SSFF (Scale Sequence Feature… More >

  • Open Access

    ARTICLE

    The Relationship between Parental Marital Conflict and Adolescent Short Video Dependence: A Chain Mediation Model

    Lei Yang, Yang Liu*

    International Journal of Mental Health Promotion, Vol.28, No.1, 2026, DOI:10.32604/ijmhp.2025.073529 - 28 January 2026

    Abstract Background: This study aims to investigate the underlying mechanisms between parental marital conflict and adolescent short video dependence by constructing a chain mediation model, focusing on the mediating roles of experiential avoidance and emotional disturbance (anxiety, depression, and stress). Methods: Conducted in January 2025, the research recruited 4125 adolescents from multiple Chinese provinces through convenience sampling; after data cleaning, 3957 valid participants (1959 males, 1998 females) were included. Using a cross-sectional design, measures included parental marital conflict, experiential avoidance, anxiety, depression, stress, and short video dependence. Results: Pearson correlation analysis revealed significant positive correlations among all variables.… More >

  • Open Access

    ARTICLE

    A Trajectory-Guided Diffusion Model for Consistent and Realistic Video Synthesis in Autonomous Driving

    Beike Yu, Dafang Wang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.076439 - 29 January 2026

    Abstract Scalable simulation leveraging real-world data plays an essential role in advancing autonomous driving, owing to its efficiency and applicability in both training and evaluating algorithms. Consequently, there has been increasing attention on generating highly realistic and consistent driving videos, particularly those involving viewpoint changes guided by the control commands or trajectories of ego vehicles. However, current reconstruction approaches, such as Neural Radiance Fields and 3D Gaussian Splatting, frequently suffer from limited generalization and depend on substantial input data. Meanwhile, 2D generative models, though capable of producing unknown scenes, still have room for improvement in terms… More >

  • Open Access

    ARTICLE

    A Subdomain-Based GPU Parallel Scheme for Accelerating Perdynamics Modeling with Reduced Graphics Memory

    Zuokun Yang1, Jun Li1,2,*, Xin Lai1,2, Lisheng Liu1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.075980 - 29 January 2026

    Abstract Peridynamics (PD) demonstrates unique advantages in addressing fracture problems, however, its nonlocality and meshfree discretization result in high computational and storage costs. Moreover, in its engineering applications, the computational scale of classical GPU parallel schemes is often limited by the finite graphics memory of GPU devices. In the present study, we develop an efficient particle information management strategy based on the cell-linked list method and on this basis propose a subdomain-based GPU parallel scheme, which exhibits outstanding acceleration performance in specific compute kernels while significantly reducing graphics memory usage. Compared to the classical parallel scheme,… More >

  • Open Access

    ARTICLE

    A Novel Unified Framework for Automated Generation and Multimodal Validation of UML Diagrams

    Van-Viet Nguyen1, Huu-Khanh Nguyen2, Kim-Son Nguyen1, Thi Minh-Hue Luong1, Duc-Quang Vu1, Trung-Nghia Phung3, The-Vinh Nguyen1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075442 - 29 January 2026

    Abstract It remains difficult to automate the creation and validation of Unified Modeling Language (UML) diagrams due to unstructured requirements, limited automated pipelines, and the lack of reliable evaluation methods. This study introduces a cohesive architecture that amalgamates requirement development, UML synthesis, and multimodal validation. First, LLaMA-3.2-1B-Instruct was utilized to generate user-focused requirements. Then, DeepSeek-R1-Distill-Qwen-32B applies its reasoning skills to transform these requirements into PlantUML code. Using this dual-LLM pipeline, we constructed a synthetic dataset of 11,997 UML diagrams spanning six major diagram families. Rendering analysis showed that 89.5% of the generated diagrams compile correctly, while… More >

  • Open Access

    ARTICLE

    Real-Time Mouth State Detection Based on a BiGRU-CLPSO Hybrid Model with Facial Landmark Detection for Healthcare Monitoring Applications

    Mong-Fong Horng1,#, Thanh-Lam Nguyen1,#, Thanh-Tuan Nguyen2,*, Chin-Shiuh Shieh1,*, Lan-Yuen Guo3, Chen-Fu Hung4, Chun-Chih Lo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075064 - 29 January 2026

    Abstract The global population is rapidly expanding, driving an increasing demand for intelligent healthcare systems. Artificial intelligence (AI) applications in remote patient monitoring and diagnosis have achieved remarkable progress and are emerging as a major development trend. Among these applications, mouth motion tracking and mouth-state detection represent an important direction, providing valuable support for diagnosing neuromuscular disorders such as dysphagia, Bell’s palsy, and Parkinson’s disease. In this study, we focus on developing a real-time system capable of monitoring and detecting mouth state that can be efficiently deployed on edge devices. The proposed system integrates the Facial… More >

  • Open Access

    ARTICLE

    Computational Analysis of Thermal Buckling in Doubly-Curved Shells Reinforced with Origami-Inspired Auxetic Graphene Metamaterials

    Ehsan Arshid*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074898 - 29 January 2026

    Abstract In this work, a computational modelling and analysis framework is developed to investigate the thermal buckling behavior of doubly-curved composite shells reinforced with graphene-origami (G-Ori) auxetic metamaterials. A semi-analytical formulation based on the First-Order Shear Deformation Theory (FSDT) and the principle of virtual displacements is established, and closed-form solutions are derived via Navier’s method for simply supported boundary conditions. The G-Ori metamaterial reinforcements are treated as programmable constructs whose effective thermo-mechanical properties are obtained via micromechanical homogenization and incorporated into the shell model. A comprehensive parametric study examines the influence of folding geometry, dispersion arrangement, More >

  • Open Access

    ARTICLE

    Exact Computer Modeling of Photovoltaic Sources with Lambert-W Explicit Solvers for Real-Time Emulation and Controller Verification

    Abdulaziz Almalaq1, Ambe Harrison2,*, Ibrahim Alsaleh1, Abdullah Alassaf1, Mashari Alangari1

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074815 - 29 January 2026

    Abstract We present a computer-modeling framework for photovoltaic (PV) source emulation that preserves the exact single-diode physics while enabling iteration-free, real-time evaluation. We derive two closed-form explicit solvers based on the Lambert W function: a voltage-driven V-Lambert solver for high-fidelity I–V computation and a resistance-driven R-Lambert solver designed for seamless integration in a closed-loop PV emulator. Unlike Taylor-linearized explicit models, our proposed formulation retains the exponential nonlinearity of the PV equations. It employs a numerically stable analytical evaluation that eliminates the need for lookup tables and root-finding, all while maintaining limited computational costs and a small… More >

  • Open Access

    REVIEW

    The Transparency Revolution in Geohazard Science: A Systematic Review and Research Roadmap for Explainable Artificial Intelligence

    Moein Tosan1,*, Vahid Nourani2,3, Ozgur Kisi4,5,6, Yongqiang Zhang7, Sameh A. Kantoush8, Mekonnen Gebremichael9, Ruhollah Taghizadeh-Mehrjardi10, Jinhui Jeanne Huang11

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074768 - 29 January 2026

    Abstract The integration of machine learning (ML) into geohazard assessment has successfully instigated a paradigm shift, leading to the production of models that possess a level of predictive accuracy previously considered unattainable. However, the black-box nature of these systems presents a significant barrier, hindering their operational adoption, regulatory approval, and full scientific validation. This paper provides a systematic review and synthesis of the emerging field of explainable artificial intelligence (XAI) as applied to geohazard science (GeoXAI), a domain that aims to resolve the long-standing trade-off between model performance and interpretability. A rigorous synthesis of 87 foundational… More >

Displaying 1-10 on page 1 of 5839. Per Page