J. S. V. Siva Kumar1, Mahmad Mustafa2, Sk. M. Unnisha Begum3, Badugu Suresh4, Rajanand Patnaik Narasipuram5,*
Energy Engineering, Vol.122, No.10, pp. 3891-3904, 2025, DOI:10.32604/ee.2025.070052
- 30 September 2025
Abstract Electric vehicle (EV) monitoring systems commonly depend on IoT-based sensor measurements to track key performance parameters such as vehicle speed, state of charge (SoC), battery temperature, power consumption, motor RPM, and regenerative braking. While these systems enable real-time data acquisition, they are often hindered by sensor noise, communication delays, and measurement uncertainties, which compromise their reliability for critical decision-making. To overcome these limitations, this study introduces a comparative framework that integrates reference signals, a digital twin model emulating ideal system behavior, and real-time IoT measurements. The digital twin provides a predictive and noise-resilient representation of More >