Yingli Liu1,2, Yuting Cui1,2, Haihe Zhou1,2, Sheng Lei3, Haibin Yuan3, Tao Shen1,2,*, Jiancheng Yin4,*
CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1463-1492, 2025, DOI:10.32604/cmc.2025.060109
- 17 February 2025
Abstract Finding materials with specific properties is a hot topic in materials science. Traditional materials design relies on empirical and trial-and-error methods, requiring extensive experiments and time, resulting in high costs. With the development of physics, statistics, computer science, and other fields, machine learning offers opportunities for systematically discovering new materials. Especially through machine learning-based inverse design, machine learning algorithms analyze the mapping relationships between materials and their properties to find materials with desired properties. This paper first outlines the basic concepts of materials inverse design and the challenges faced by machine learning-based approaches to materials More >
Graphic Abstract