Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,000)
  • Open Access

    ARTICLE

    EG-STC: An Efficient Secure Two-Party Computation Scheme Based on Embedded GPU for Artificial Intelligence Systems

    Zhenjiang Dong1, Xin Ge1, Yuehua Huang1, Jiankuo Dong1, Jiang Xu2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4021-4044, 2024, DOI:10.32604/cmc.2024.049233

    Abstract This paper presents a comprehensive exploration into the integration of Internet of Things (IoT), big data analysis, cloud computing, and Artificial Intelligence (AI), which has led to an unprecedented era of connectivity. We delve into the emerging trend of machine learning on embedded devices, enabling tasks in resource-limited environments. However, the widespread adoption of machine learning raises significant privacy concerns, necessitating the development of privacy-preserving techniques. One such technique, secure multi-party computation (MPC), allows collaborative computations without exposing private inputs. Despite its potential, complex protocols and communication interactions hinder performance, especially on resource-constrained devices. Efforts… More >

  • Open Access

    ARTICLE

    Developing a Model for Parkinson’s Disease Detection Using Machine Learning Algorithms

    Naif Al Mudawi*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4945-4962, 2024, DOI:10.32604/cmc.2024.048967

    Abstract Parkinson’s disease (PD) is a chronic neurological condition that progresses over time. People start to have trouble speaking, writing, walking, or performing other basic skills as dopamine-generating neurons in some brain regions are injured or die. The patient’s symptoms become more severe due to the worsening of their signs over time. In this study, we applied state-of-the-art machine learning algorithms to diagnose Parkinson’s disease and identify related risk factors. The research worked on the publicly available dataset on PD, and the dataset consists of a set of significant characteristics of PD. We aim to apply… More >

  • Open Access

    ARTICLE

    THAPE: A Tunable Hybrid Associative Predictive Engine Approach for Enhancing Rule Interpretability in Association Rule Learning for the Retail Sector

    Monerah Alawadh*, Ahmed Barnawi

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4995-5015, 2024, DOI:10.32604/cmc.2024.048762

    Abstract Association rule learning (ARL) is a widely used technique for discovering relationships within datasets. However, it often generates excessive irrelevant or ambiguous rules. Therefore, post-processing is crucial not only for removing irrelevant or redundant rules but also for uncovering hidden associations that impact other factors. Recently, several post-processing methods have been proposed, each with its own strengths and weaknesses. In this paper, we propose THAPE (Tunable Hybrid Associative Predictive Engine), which combines descriptive and predictive techniques. By leveraging both techniques, our aim is to enhance the quality of analyzing generated rules. This includes removing irrelevant… More >

  • Open Access

    ARTICLE

    Adaptive Cloud Intrusion Detection System Based on Pruned Exact Linear Time Technique

    Widad Elbakri1, Maheyzah Md. Siraj1,*, Bander Ali Saleh Al-rimy1, Sultan Noman Qasem2, Tawfik Al-Hadhrami3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3725-3756, 2024, DOI:10.32604/cmc.2024.048105

    Abstract Cloud computing environments, characterized by dynamic scaling, distributed architectures, and complex workloads, are increasingly targeted by malicious actors. These threats encompass unauthorized access, data breaches, denial-of-service attacks, and evolving malware variants. Traditional security solutions often struggle with the dynamic nature of cloud environments, highlighting the need for robust Adaptive Cloud Intrusion Detection Systems (CIDS). Existing adaptive CIDS solutions, while offering improved detection capabilities, often face limitations such as reliance on approximations for change point detection, hindering their precision in identifying anomalies. This can lead to missed attacks or an abundance of false alarms, impacting overall… More >

  • Open Access

    ARTICLE

    Hybrid Gene Selection Methods for High-Dimensional Lung Cancer Data Using Improved Arithmetic Optimization Algorithm

    Mutasem K. Alsmadi*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5175-5200, 2024, DOI:10.32604/cmc.2024.044065

    Abstract Lung cancer is among the most frequent cancers in the world, with over one million deaths per year. Classification is required for lung cancer diagnosis and therapy to be effective, accurate, and reliable. Gene expression microarrays have made it possible to find genetic biomarkers for cancer diagnosis and prediction in a high-throughput manner. Machine Learning (ML) has been widely used to diagnose and classify lung cancer where the performance of ML methods is evaluated to identify the appropriate technique. Identifying and selecting the gene expression patterns can help in lung cancer diagnoses and classification. Normally,… More >

  • Open Access

    ARTICLE

    Arrhythmia Detection by Using Chaos Theory with Machine Learning Algorithms

    Maie Aboghazalah1,*, Passent El-kafrawy2, Abdelmoty M. Ahmed3, Rasha Elnemr5, Belgacem Bouallegue3, Ayman El-sayed4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3855-3875, 2024, DOI:10.32604/cmc.2023.039936

    Abstract Heart monitoring improves life quality. Electrocardiograms (ECGs or EKGs) detect heart irregularities. Machine learning algorithms can create a few ECG diagnosis processing methods. The first method uses raw ECG and time-series data. The second method classifies the ECG by patient experience. The third technique translates ECG impulses into Q waves, R waves and S waves (QRS) features using richer information. Because ECG signals vary naturally between humans and activities, we will combine the three feature selection methods to improve classification accuracy and diagnosis. Classifications using all three approaches have not been examined till now. Several More >

  • Open Access

    ARTICLE

    Sleep Posture Classification Using RGB and Thermal Cameras Based on Deep Learning Model

    Awais Khan1, Chomyong Kim2, Jung-Yeon Kim2, Ahsan Aziz1, Yunyoung Nam3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1729-1755, 2024, DOI:10.32604/cmes.2024.049618

    Abstract Sleep posture surveillance is crucial for patient comfort, yet current systems face difficulties in providing comprehensive studies due to the obstruction caused by blankets. Precise posture assessment remains challenging because of the complex nature of the human body and variations in sleep patterns. Consequently, this study introduces an innovative method utilizing RGB and thermal cameras for comprehensive posture classification, thereby enhancing the analysis of body position and comfort. This method begins by capturing a dataset of sleep postures in the form of videos using RGB and thermal cameras, which depict six commonly adopted postures: supine,… More > Graphic Abstract

    Sleep Posture Classification Using RGB and Thermal Cameras Based on Deep Learning Model

  • Open Access

    ARTICLE

    Predicting the Mechanical Behavior of a Bioinspired Nanocomposite through Machine Learning

    Xingzi Yang1, Wei Gao2, Xiaodu Wang1, Xiaowei Zeng1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1299-1313, 2024, DOI:10.32604/cmes.2024.049371

    Abstract The bioinspired nacre or bone structure represents a remarkable example of tough, strong, lightweight, and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performance materials. The bioinspired structure consists of hard grains and soft material interfaces. While the material interface has a very low volume percentage, its property has the ability to determine the bulk material response. Machine learning technology nowadays is widely used in material science. A machine learning model was utilized to predict the material response based on the material interface properties in a bioinspired nanocomposite. This model More >

  • Open Access

    ARTICLE

    Advanced Machine Learning Methods for Prediction of Blast-Induced Flyrock Using Hybrid SVR Methods

    Ji Zhou1,2, Yijun Lu3, Qiong Tian1,2, Haichuan Liu3, Mahdi Hasanipanah4,5,*, Jiandong Huang3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1595-1617, 2024, DOI:10.32604/cmes.2024.048398

    Abstract Blasting in surface mines aims to fragment rock masses to a proper size. However, flyrock is an undesirable effect of blasting that can result in human injuries. In this study, support vector regression (SVR) is combined with four algorithms: gravitational search algorithm (GSA), biogeography-based optimization (BBO), ant colony optimization (ACO), and whale optimization algorithm (WOA) for predicting flyrock in two surface mines in Iran. Additionally, three other methods, including artificial neural network (ANN), kernel extreme learning machine (KELM), and general regression neural network (GRNN), are employed, and their performances are compared to those of four More >

  • Open Access

    ARTICLE

    Suboptimal Feature Selection Techniques for Effective Malicious Traffic Detection on Lightweight Devices

    So-Eun Jeon1, Ye-Sol Oh1, Yeon-Ji Lee1, Il-Gu Lee1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1669-1687, 2024, DOI:10.32604/cmes.2024.047239

    Abstract With the advancement of wireless network technology, vast amounts of traffic have been generated, and malicious traffic attacks that threaten the network environment are becoming increasingly sophisticated. While signature-based detection methods, static analysis, and dynamic analysis techniques have been previously explored for malicious traffic detection, they have limitations in identifying diversified malware traffic patterns. Recent research has been focused on the application of machine learning to detect these patterns. However, applying machine learning to lightweight devices like IoT devices is challenging because of the high computational demands and complexity involved in the learning process. In… More >

Displaying 21-30 on page 3 of 1000. Per Page