Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (88)
  • Open Access

    ARTICLE

    FLOW EQUATIONS AND THEIR BORDERLINES FOR DIFFERENT REGIMES OF MASS TRANSFER

    Jian Li1,2, Yongbin Zhang1,*

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-5, 2021, DOI:10.5098/hmt.16.21

    Abstract The paper introduces the flow equations for the fluid flows in a cylindrical tube respectively on the macroscale, multiscale and nanoscale, especially recently developed ones. It manifests that when these equations should be used in calculating the transferred mass and what should be taken into consideration when the tube inner radius is reduced to very small values. It gives an important indication on how to treat the mass transfer calculation for the tube flow on different size scales. More >

  • Open Access

    ARTICLE

    NUMERICAL APPROACH OF HEAT AND MASS TRANSFER OF MHD CASSON FLUID UNDER RADIATION OVER AN EXPONENTIALLY PERMEABLE STRETCHING SHEET WITH CHEMICAL REACTION AND HALL EFFECT

    G. R. Ganesh, W. Sridhar*

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-11, 2021, DOI:10.5098/hmt.16.5

    Abstract In this paper, heat and mass transfer of MHD Casson fluid under radiation over an exponentially permeable stretching sheet with chemical reaction and Hall Effect investigated numerically. Suitable similarity transformations are used to convert the governing partial differential equations to nonlinear ordinary differential equations. Using a numerical technique named Keller box method the equations are then solved. Study of various effects such as chemical reaction, hall effect, suction /injection on magneto hydrodynamic Casson fluid along with radiation the heat source parameter, chemical reaction parameter, Schmidt number are tabulated for various parameters. Also local parameters are… More >

  • Open Access

    ARTICLE

    TRANSVERSAL FLOW AND HEAT TRANSFER OF TWO CYLINDERS WITH A FLAPPING REED BETWEEN THEM

    Zhiyun Wang*, Ziqing Wang, Mo Yang

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-7, 2021, DOI:10.5098/hmt.17.10

    Abstract This paper presents a two-dimensional fluid-structure interaction numerical simulation of fluid flow over two horizontal heat exchange cylinders affected by a flapping reed in a domain. The reed is a thin flexible sheet made of elastic material with one end fixed on the trailing edge of the upstream cylinder. The effects of the reed length and the cylinder spacing on the periodic oscillations of the reed, the flow field and the heat transfer of the downstream cylinder. The results show that the oscillation of the reed in this paper is a single-period oscillate model. Compared… More >

  • Open Access

    ARTICLE

    STEADY MHD FLOW OVER A YAWED CYLINDER WITH MASS TRANSFER

    A. Sahaya Jenifera , P. Saikrishnana,*, J. Rajakumarb

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-8, 2021, DOI:10.5098/hmt.17.4

    Abstract This paper examines the steady magnetohydrodynamic (MHD) flow of water over a yawed cylinder with variable fluid properties and non-uniform mass transfer. The impact of viscous dissipation is taken into consideration. The velocity and temperature fields are governed by coupled nonlinear partial differential equations together with boundary constraints. These governing equations are converted to dimensionless form with suitable non-similar transformations and then solved using an implicit finite difference method and the quasi-linearization technique. The results indicate that the yaw angle enhancement declines the skin friction coefficient in the axial direction and the heat transfer coefficient. More >

  • Open Access

    ARTICLE

    An Unsteady Oscillatory Flow of Generalized Casson Fluid with Heat and Mass Transfer: A Comparative Fractional Model

    Anis ur Rehman1, Farhad Ali1, Aamina Aamina2,3,*, Anees Imitaz1, Ilyas Khan4, Kottakkaran Sooppy Nisar5

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1445-1459, 2021, DOI:10.32604/cmc.2020.012457 - 26 November 2020

    Abstract It is of high interest to study laminar flow with mass and heat transfer phenomena that occur in a viscoelastic fluid taken over a vertical plate due to its importance in many technological processes and its increased industrial applications. Because of its wide range of applications, this study aims at evaluating the solutions corresponding to Casson fluids’ oscillating flow using fractional-derivatives. As it has a combined mass-heat transfer effect, we considered the fluid flow upon an oscillatory infinite vertical-plate. Furthermore, we used two new fractional approaches of fractional derivatives, named AB (Atangana–Baleanu) and CF (Caputo–Fabrizio), More >

  • Open Access

    ARTICLE

    Effects of Combined Heat and Mass Transfer on Entropy Generation due to MHD Nanofluid Flow over a Rotating Frame

    F. Mabood1, T. A. Yusuf2, A. M. Rashad3, W. A. Khan4,*, Hossam A. Nabwey5,6

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 575-587, 2021, DOI:10.32604/cmc.2020.012505 - 30 October 2020

    Abstract The current investigation aims to explore the combined effects of heat and mass transfer on free convection of Sodium alginate-Fe3O4 based Brinkmann type nanofluid flow over a vertical rotating frame. The Tiwari and Das nanofluid model is employed to examine the effects of dimensionless numbers, including Grashof, Eckert, and Schmidt numbers and governing parameters like solid volume fraction of nanoparticles, Hall current, magnetic field, viscous dissipation, and the chemical reaction on the physical quantities. The dimensionless nonlinear partial differential equations are solved using a finite difference method known as Runge-Kutta Fehlberg (RKF-45) method. The variation More >

  • Open Access

    ARTICLE

    PREDICTION OF MASS TRANSFER COEFFICIENT OF THE CONTINUOUS PHASE IN A STRUCTURED PACKED EXTRACTION COLUMN IN THE PRESENCE OF SIO2 NANOPARTICLES

    Fereshteh Salimi Nanadegani, Bengt Sunden*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-11, 2020, DOI:10.5098/hmt.14.21

    Abstract In this experimental study, mass transfer and hydrodynamic parameters of water/kerosene/acetic acid system in a packed column were investigated, in which the mass transfer direction was set from the continuous phase (saturated water of kerosene and acetic acid) to the dispersed phase (saturated kerosene of water) in all the experiments. To assess the impact of nanoparticles on mass transfer, the experiments were performed in the presence of SiO2 nanoparticles and absence of the nanoparticles. The results showed that the addition of the nanoparticles to the base fluid (saturated kerosene of water) increased the mass transfer efficiency More >

  • Open Access

    ARTICLE

    EFFECTS OF VARIABLE VISCOSITY ON HEAT AND MASS TRANSFER BY MHD MIXED CONVECTION FLOW ALONG A VERTICAL CYLINDER EMBEDDED IN A NON-DARCY POROUS MEDIUM

    Saddam Atteyia Mohammad*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-10, 2020, DOI:10.5098/hmt.14.7

    Abstract An analysis was performed to study the effects of variable viscosity on steady, laminar, hydromagnetic simultaneous heat and mass transfer by mixed convection flow along a vertical cylinder embedded in a non-Darcy porous medium. The analysis was performed for the case of power-law variations of both the surface temperature and concentration. The viscosity of the fluid is assumed to be an inverse linear function of temperature. Certain transformations were employed to transform the governing differential equations to non-similar form. The transformed equations were solved numerically by finite difference method. The entire regime of mixed convection… More >

  • Open Access

    ARTICLE

    MULTISCALE OR NO MULTISCALE ANALYSIS FOR MASS TRANSFER IN A MICRO/NANOCHANNEL?

    Zhipeng Tanga, Yongbin Zhangb,*

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-6, 2020, DOI:10.5098/hmt.15.11

    Abstract The mass flow rate through a micro/nano channel is calculated by a multiscale analysis when the thickness of the adsorbed layer on the channel wall is comparable to the channel height and the interfacial slippage on the adsorbed layer-wall surface interface occurs or not. The calculation is compared with that from conventional continuum flow theory. It is found that when the ratio More >

  • Open Access

    ARTICLE

    Numerical Study of the Distribution of Temperatures and Relative Humidity in a Ventilated Room Located in Warm Weather

    J. Serrano-Arellano1, J. M. Belman-Flores2,*, I. Hernández-Pérez3, K. M. Aguilar-Castro3, E. V. Macías-Melo3, F. Elizalde-Blancas2, J. M. Riesco-Ávila2, F. J. García-Rodríguez4

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 571-602, 2020, DOI:10.32604/cmes.2020.08677 - 01 May 2020

    Abstract In the present study, an analysis of the heat and mass transfer in a ventilated cavity in a warm climate zone was carried out to analyze, among others, the temperatures and percentage of relative humidity (RH). The governing equations of the mathematical model were solved through the finite volume method. We used the k-ε turbulence mode to find the results of the variables of interest in seven climate records on a given day. The velocity of the inlet flow of the air-H2O mixture was varied through the Reynolds number (Re) from 500 to 10000. The outdoor weather… More >

Displaying 21-30 on page 3 of 88. Per Page