Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (88)
  • Open Access

    ARTICLE

    INDUCED MAGNETIC FIELD INTERACTION IN FREE CONVECTIVE HEAT ANDMASS TRANSFER FLOW OF A CHEMICALLY REACTIVE HEAT GENERATING FLUID WITH THERMO-DIFFUSION AND DIFFUSION-THERMO EFFECTS

    Sanjib Senguptaa,*, Amrit Karmakarb

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-12, 2018, DOI:10.5098/hmt.10.19

    Abstract An exact analysis is made to study the magnetohydrodynamics (MHD) free convective flow of an electrically conducting and chemically reacting Newtonian, incompressible, viscous fluid, flowing past an infinite vertical plate with combined heat and mass transfer. An inclined magnetic field of uniform strength is applied to the plate. As the value of the magnetic Reynolds number is of comparable order of magnitude, the effect of induced magnetic field is being considered and on the other hand due to weak voltage difference caused by the very low polarization charges, the influence of electric field is considered… More >

  • Open Access

    ARTICLE

    COMPUTATION OF UNSTEADY MHD MIXED CONVECTIVE HEAT AND MASS TRANSFER IN DISSIPATIVE REACTIVE MICROPOLAR FLOW CONSIDERING SORET AND DUFOUR EFFECTS

    M.D. Shamshuddina,*, A.J. Chamkhab,c, Thirupathi Thummad, M.C. Rajue

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-15, 2018, DOI:10.5098/hmt.10.15

    Abstract In the current paper, a finite element computational solution is conducted for MHD double diffusive flow characterizing dissipative micropolar mixed convective heat and mass transfer adjacent to a vertical porous plate embedded in a saturated porous medium. The micropolar fluid is also chemically reacting, both Soret and Dufour effects and also heat absorption included. The governing partial differential equations for momentum, heat, angular momentum and species conservation are transformed into dimensionless form under the assumption of low Reynolds number with appropriate dimensionless quantities. The emerging boundary value problem is then solved numerically with an efficient… More >

  • Open Access

    ARTICLE

    HEAT AND MASS TRANSFER ANALYSIS ON MHD MIXED CONVECTION FLOW OF RADIATIVE CHEMICALLY HEAT GENERATING FLUID WITH VISCOUS DISSIPATION AND THERMO-DIFFUSION EFFECT

    Sanjib Senguptaa,*, Amrit Karmakarb

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-13, 2018, DOI:10.5098/hmt.11.30

    Abstract In this paper an analysis on heat and mass transfer is made to study magnetohydrodynamic (MHD) mixed convective flow of an incompressible viscous fluid flowing past an inclined plate. A magnetic field of uniform strength is applied to the plate to influence the flow. Due to weak voltage differences caused by the very low polarization charges, the influence of electric field is considered to be neglected. Again large temperature gradient ensures cross diffusion effect like thermo-diffusion (Soret) in the field. The governed set of non-linear partial differential equations is solved by developing a multi-parameter asymptotic… More >

  • Open Access

    ARTICLE

    HEAT AND MASS TRANSFER ON MHD FLUID FLOW OVER A SEMI INFINITE FLAT PLATE WITH RADIATION ABSORPTION, HEAT SOURCE AND DIFFUSION THERMO EFFECT

    G. Dharmaiaha,* , CH. Baby Ranib , N. Vedavathic , K.S. Balamurugand

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-8, 2018, DOI:10.5098/hmt.11.6

    Abstract Analytical investigation is carried out to analyze the unsteady, two-dimensional, laminar, boundary layer flow of a viscous incompressible electrically conducting and heat absorbing fluid along a semi-infinite vertical permeable moving plate in the presence of Diffusion-thermo and radiation absorption effects. The set of ordinary differential equations are solved by using perturbation technique. The effects of the various fluid flow parameters on velocity, temperature and concentration fields with in the boundary layer have been analyzed with the help of graphs. Numerical values of local skin-friction coefficient, nusselt number and Sherwood number are tabulated. More >

  • Open Access

    ARTICLE

    SLIP EFFECT ON HEAT AND MASS TRANSFER IN CASSON FLUID WITH CATTANEO-CHRISTOVE HEAT FLUX MODEL

    P. Bala Anki Reddya , B. Mallikarjunab,*,K. Madhu Sudhan Reddya

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-10, 2018, DOI:10.5098/hmt.11.5

    Abstract In this paper, a mathematical model has been developed to analyze the double diffusive convective flow of Casson fluid over an inclined stretching sheet with Cattaneo-Christov Heat Flux model. The velocity slip is considered over the surface of the stretching sheet as well. The governing equations for the pertinent model are transformed into non-dimensional highly coupled nonlinear differential equations using similarity transformations. The implicit finite difference method is used to carry out the numerical results and presented the graphs for different values of the physical parameter, Casson fluid parameter, and thermal relation time parameter, chemical… More >

  • Open Access

    ARTICLE

    MELTING AND RADIATION EFFECTS ON MIXED CONVECTION BOUNDARY LAYER VISCOUS FLOW OVER A VERTICAL PLATE IN PRESENCE OF HOMOGENEOUS HIGHER ORDER CHEMICAL REACTION

    D. R. V. S. R. K. Sastry

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-7, 2018, DOI:10.5098/hmt.11.3

    Abstract The present paper investigates the combined effects of melting phenomenon and viscous dissipation over a steady incompressible mixed convection boundary layer fluid flow along a vertical plate. Radiation and double dispersion are also taken into consideration. Further effect of homogeneous chemical reaction of order ’n’ is studied over the non-Darcy porous plate. Continuum equations that characterize fluid flow are transformed to a set of non linear ordinary differential equations through a suitable similarity transformation. These equations are then solved by MATLAB ’bvp4c’ iterative programming method. As a matter of accuracy and validation, available results are More >

  • Open Access

    ARTICLE

    Heat and Mass Transfer of a non-Newtonian Fluid Flow in an Anisotropic Porous Channel with Chemical Surface Reaction

    Z. Neffah1, H. Kahalerras1, *, B. Fersadou1

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.1, pp. 39-56, 2018, DOI:10.3970/fdmp.2018.014.039

    Abstract A numerical study of heat and mass transfer in a non-Newtonian fluid in a parallel-plate channel partly filled with an anisotropic porous medium and subjected to an exothermic chemical reaction on its walls has been conducted. The flow field in the porous region has been modeled by the modified Brinkman-Forchheimer extended Darcy model for power-law fluids and a finite volume method has been used to solve the governing equations. The influence played by a variation of the anisotropic ratio on thermal conductivity, power-law index, Darcy number, and chemical reaction characteristics has been examined. We show More >

  • Open Access

    ARTICLE

    Mass Transfer of MHD Nanofluid in Presence of Chemical Reaction on A Permeable Rotating Disk with Convective Boundaries, Using Buongiorno's Model

    Muhammad Shoaib Arif 1, *, Yasir Nawaz1, Mairaj Bibi2, Zafar Ali1

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.1, pp. 31-49, 2018, DOI:10.31614/cmes.2018.00434

    Abstract This communiqué is opted to study the flow of nanofluid because of heated disk rotation subjected to the convective boundaries with chemical reaction of first order. Wherein Buongiorno’s model for nanofluids is used due to its wide range of applications and the rotating disk under investigation is permeable. Small magneto Reynolds parameter and boundary layer assumptions are carried out to formulate the problem. The system of nonlinear partial differential equations governing the flow problem is converted into the set of ordinary differential equations by using particular relations known as Von Karman transformations. The complicated set More >

  • Open Access

    ARTICLE

    A Numerical Study of the Transitions of Laminar Natural Flows in a Square Cavity

    Nouri Sabrina1,*, Abderrahmane Ghezal1, Said Abboudi2, Pierre Spiteri3

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.2, pp. 121-135, 2018, DOI:10.3970/fdmp.2018.02045

    Abstract This paper deals with the numerical study of heat and mass transfer occurring in a cavity filled with a low Prandtl number liquid. The model includes the momentum, energy and mass balance equations. These equations are discretized by a finite volume technique and solved in the framework of a custom SIMPLER method developed in FORTRAN. The effect of the problem characteristic parameters, namely the Lewis and Prandtl numbers, on the instability of the flow and related solute distribution is studied for positive and negative thermal and solutal buoyancy forces ratio. Nusselt and Sherwood numbers are More >

  • Open Access

    EDITORIAL

    FRONTIERS IN HEAT PIPES (FHP) IS MERGEED INTO FRONTIERS IN HEAT AND MASS TRANSFER (FHMT)

    Amir Faghri, Yuwen Zhang

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-1, 2017, DOI:10.5098/hmt.8.41

    Abstract This article has no abstract. More >

Displaying 41-50 on page 5 of 88. Per Page