Huabo Wu1,2, Jialiao Zhou3, Lan Huang1,2,*, Zi Wang1,2,*, Liming Tan1,2, Jin Lv4, Feng Liu1,2
CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2675-2709, 2025, DOI:10.32604/cmes.2025.064854
- 30 June 2025
Abstract Nickel-based superalloys are indispensable for high-temperature engineering applications, yet their additive manufacturing (AM) is plagued by significant cracking defects. This review investigates crack failure mechanisms in AM nickel-based superalloys, emphasizing methodologies to evaluate crack sensitivity and compositional design strategies to mitigate defects. Key crack types—solidification, liquation, solid-state, stress corrosion, fatigue, and creep-fatigue cracks—are analyzed, with focus on formation mechanisms driven by thermal gradients, solute segregation, and microstructural heterogeneities. Evaluation frameworks such as the Rappaz-Drezet-Gremaud (RDG) criterion, Solidification Cracking Index (SCI), and Strain Age Cracking (SAC) index are reviewed for predicting crack susceptibility through integration of… More >