Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (755)
  • Open Access

    ARTICLE

    MAMGBR: Group-Buying Recommendation Model Based on Multi-Head Attention Mechanism and Multi-Task Learning

    Zongzhe Xu, Ming Yu*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2805-2826, 2025, DOI:10.32604/cmc.2025.066244 - 03 July 2025

    Abstract As the group-buying model shows significant progress in attracting new users, enhancing user engagement, and increasing platform profitability, providing personalized recommendations for group-buying users has emerged as a new challenge in the field of recommendation systems. This paper introduces a group-buying recommendation model based on multi-head attention mechanisms and multi-task learning, termed the Multi-head Attention Mechanisms and Multi-task Learning Group-Buying Recommendation (MAMGBR) model, specifically designed to optimize group-buying recommendations on e-commerce platforms. The core dataset of this study comes from the Chinese maternal and infant e-commerce platform “Beibei,” encompassing approximately 430,000 successful group-buying actions and… More >

  • Open Access

    ARTICLE

    SPD-YOLO: A Method for Detecting Maize Disease Pests Using Improved YOLOv7

    Zhunruo Feng1, Ruomeng Shi2, Yuhan Jiang3, Yiming Han1, Zeyang Ma1, Yuheng Ren4,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3559-3575, 2025, DOI:10.32604/cmc.2025.065152 - 03 July 2025

    Abstract In this study, we propose Space-to-Depth and You Only Look Once Version 7 (SPD-YOLOv7), an accurate and efficient method for detecting pests in maize crops, addressing challenges such as small pest sizes, blurred images, low resolution, and significant species variation across different growth stages. To improve the model’s ability to generalize and its robustness, we incorporate target background analysis, data augmentation, and processing techniques like Gaussian noise and brightness adjustment. In target detection, increasing the depth of the neural network can lead to the loss of small target information. To overcome this, we introduce the… More >

  • Open Access

    ARTICLE

    An Improved Aluminum Surface Defect Detection Algorithm Based on YOLOv8n

    Hao Qiu, Shoudong Ni*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2677-2697, 2025, DOI:10.32604/cmc.2025.064629 - 03 July 2025

    Abstract In response to the missed and false detections that are easily caused by the large variety of and significant differences among aluminum surface defects, a detection algorithm based on an improved You Only Look Once (YOLO)v8n network is proposed. First, a C2f_DWR_DRB module is constructed by introducing a dilation-wise residual (DWR) module and a dilated reparameterization block (DRB) to replace the C2f module at the high level of the backbone network, enriching the gradient flow information and increasing the effective receptive field (ERF). Second, an efficient local attention (ELA) mechanism is fused with the high-level… More >

  • Open Access

    ARTICLE

    A Lightweight Super-Resolution Network for Infrared Images Based on an Adaptive Attention Mechanism

    Mengke Tang1, Yong Gan2,*, Yifan Zhang1, Xinxin Gan3

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2699-2716, 2025, DOI:10.32604/cmc.2025.064541 - 03 July 2025

    Abstract Infrared imaging technology has been widely adopted in various fields, such as military reconnaissance, medical diagnosis, and security monitoring, due to its excellent ability to penetrate smoke and fog. However, the prevalent low resolution of infrared images severely limits the accurate interpretation of their contents. In addition, deploying super-resolution models on resource-constrained devices faces significant challenges. To address these issues, this study proposes a lightweight super-resolution network for infrared images based on an adaptive attention mechanism. The network’s dynamic weighting module automatically adjusts the weights of the attention and non-attention branch outputs based on the… More >

  • Open Access

    ARTICLE

    Design and Application of a New Distributed Dynamic Spatio-Temporal Privacy Preserving Mechanisms

    Jiacheng Xiong1, Xingshu Chen1,2,3,*, Xiao Lan2,3, Liangguo Chen1,2

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2273-2303, 2025, DOI:10.32604/cmc.2025.063984 - 03 July 2025

    Abstract In the era of big data, the growing number of real-time data streams often contains a lot of sensitive privacy information. Releasing or sharing this data directly without processing will lead to serious privacy information leakage. This poses a great challenge to conventional privacy protection mechanisms (CPPM). The existing data partitioning methods ignore the number of data replications and information exchanges, resulting in complex distance calculations and inefficient indexing for high-dimensional data. Therefore, CPPM often fails to meet the stringent requirements of efficiency and reliability, especially in dynamic spatiotemporal environments. Addressing this concern, we proposed… More >

  • Open Access

    ARTICLE

    An Improved Multi-Actor Hybrid Attention Critic Algorithm for Cooperative Navigation in Urban Low-Altitude Logistics Environments

    Chao Li1,3,#, Quanzhi Feng1,3,#, Caichang Ding2,*, Zhiwei Ye1,3

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3605-3621, 2025, DOI:10.32604/cmc.2025.063703 - 03 July 2025

    Abstract The increasing adoption of unmanned aerial vehicles (UAVs) in urban low-altitude logistics systems, particularly for time-sensitive applications like parcel delivery and supply distribution, necessitates sophisticated coordination mechanisms to optimize operational efficiency. However, the limited capability of UAVs to extract state-action information in complex environments poses significant challenges to achieving effective cooperation in dynamic and uncertain scenarios. To address this, we presents an Improved Multi-Agent Hybrid Attention Critic (IMAHAC) framework that advances multi-agent deep reinforcement learning (MADRL) through two key innovations. Firstly, a Temporal Difference Error and Time-based Prioritized Experience Replay (TT-PER) mechanism that dynamically adjusts… More >

  • Open Access

    ARTICLE

    Multi-Scale Dilated Attention-Based Transformer Network for Image Inpainting

    Jinrong Li1,2, Chunhua Wei2, Lei Liang2,3,*, Zhisheng Gao1,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3259-3280, 2025, DOI:10.32604/cmc.2025.063547 - 03 July 2025

    Abstract The Pressure Sensitive Paint Technique (PSP) has gained attention in recent years because of its significant benefits in measuring surface pressure on wind tunnel models. However, in the post-processing process of PSP images, issues such as pressure taps, paint peeling, and contamination can lead to the loss of pressure data on the image, which seriously affects the subsequent calculation and analysis of pressure distribution. Therefore, image inpainting is particularly important in the post-processing process of PSP images. Deep learning offers new methods for PSP image inpainting, but some basic characteristics of convolutional neural networks (CNNs)… More >

  • Open Access

    REVIEW

    Advances in Crack Formation Mechanisms, Evaluation Models, and Compositional Strategies for Additively Manufactured Nickel-Based Superalloys

    Huabo Wu1,2, Jialiao Zhou3, Lan Huang1,2,*, Zi Wang1,2,*, Liming Tan1,2, Jin Lv4, Feng Liu1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2675-2709, 2025, DOI:10.32604/cmes.2025.064854 - 30 June 2025

    Abstract Nickel-based superalloys are indispensable for high-temperature engineering applications, yet their additive manufacturing (AM) is plagued by significant cracking defects. This review investigates crack failure mechanisms in AM nickel-based superalloys, emphasizing methodologies to evaluate crack sensitivity and compositional design strategies to mitigate defects. Key crack types—solidification, liquation, solid-state, stress corrosion, fatigue, and creep-fatigue cracks—are analyzed, with focus on formation mechanisms driven by thermal gradients, solute segregation, and microstructural heterogeneities. Evaluation frameworks such as the Rappaz-Drezet-Gremaud (RDG) criterion, Solidification Cracking Index (SCI), and Strain Age Cracking (SAC) index are reviewed for predicting crack susceptibility through integration of… More >

  • Open Access

    ARTICLE

    Aerial Object Tracking with Attention Mechanisms: Accurate Motion Path Estimation under Moving Camera Perspectives

    Yu-Shiuan Tsai*, Yuk-Hang Sit

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3065-3090, 2025, DOI:10.32604/cmes.2025.064783 - 30 June 2025

    Abstract To improve small object detection and trajectory estimation from an aerial moving perspective, we propose the Aerial View Attention-PRB (AVA-PRB) model. AVA-PRB integrates two attention mechanisms—Coordinate Attention (CA) and the Convolutional Block Attention Module (CBAM)—to enhance detection accuracy. Additionally, Shape-IoU is employed as the loss function to refine localization precision. Our model further incorporates an adaptive feature fusion mechanism, which optimizes multi-scale object representation, ensuring robust tracking in complex aerial environments. We evaluate the performance of AVA-PRB on two benchmark datasets: Aerial Person Detection and VisDrone2019-Det. The model achieves 60.9% mAP@0.5 on the Aerial Person… More >

  • Open Access

    ARTICLE

    Attention Driven YOLOv5 Network for Enhanced Landslide Detection Using Satellite Imagery of Complex Terrain

    Naveen Chandra1, Himadri Vaidya2,3, Suraj Sawant4, Shilpa Gite5,6, Biswajeet Pradhan7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3351-3375, 2025, DOI:10.32604/cmes.2025.064395 - 30 June 2025

    Abstract Landslide hazard detection is a prevalent problem in remote sensing studies, particularly with the technological advancement of computer vision. With the continuous and exceptional growth of the computational environment, the manual and partially automated procedure of landslide detection from remotely sensed images has shifted toward automatic methods with deep learning. Furthermore, attention models, driven by human visual procedures, have become vital in natural hazard-related studies. Hence, this paper proposes an enhanced YOLOv5 (You Only Look Once version 5) network for improved satellite-based landslide detection, embedded with two popular attention modules: CBAM (Convolutional Block Attention Module) More >

Displaying 1-10 on page 1 of 755. Per Page