Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (209)
  • Open Access

    ARTICLE

    Artificial Neural Network Model for Thermal Conductivity Estimation of Metal Oxide Water-Based Nanofluids

    Nikhil S. Mane1, Sheetal Kumar Dewangan2,*, Sayantan Mukherjee3, Pradnyavati Mane4, Deepak Kumar Singh1, Ravindra Singh Saluja5

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.072090 - 10 November 2025

    Abstract The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids. Researchers rely on experimental investigations to explore nanofluid properties, as it is a necessary step before their practical application. As these investigations are time and resource-consuming undertakings, an effective prediction model can significantly improve the efficiency of research operations. In this work, an Artificial Neural Network (ANN) model is developed to predict the thermal conductivity of metal oxide water-based nanofluid. For this, a comprehensive set of 691 data points was collected from the literature. This dataset is split More >

  • Open Access

    ARTICLE

    Neuro-Fuzzy Computational Dynamics of Reactive Hybrid Nanofluid Flow Inside a Squarely Elevated Riga Tunnel with Ramped Thermo-Solutal Conditions under Strong Electromagnetic Rotation

    Asgar Ali1,*, Nayan Sardar2, Poly Karmakar3, Sanatan Das4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3563-3626, 2025, DOI:10.32604/cmes.2025.074082 - 23 December 2025

    Abstract Hybrid nanofluids have gained significant attention for their superior thermal and rheological characteristics, offering immense potential in energy conversion, biomedical transport, and electromagnetic flow control systems. Understanding their dynamic behavior under coupled magnetic, rotational, and reactive effects is crucial for the development of efficient thermal management technologies. This study develops a neuro-fuzzy computational framework to examine the dynamics of a reactive Cu–TiO2–H2O hybrid nanofluid flowing through a squarely elevated Riga tunnel. The governing model incorporates Hall and ion-slip effects, thermal radiation, and first-order chemical reactions under ramped thermo-solutal boundary conditions and rotational electromagnetic forces. Closed-form analytical… More >

  • Open Access

    ARTICLE

    A Comprehensive Numerical and Data-Driven Investigations of Nanofluid Heat Transfer Enhancement Using the Finite Element Method and Artificial Neural Network

    Adnan Ashique1,#, Khalid Masood2, Usman Afzal1, Mati Ur Rahman2, Maddina Dinesh Kumar3, Sohaib Abdal3, Nehad Ali Shah1,#,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3627-3699, 2025, DOI:10.32604/cmes.2025.072523 - 23 December 2025

    Abstract This study outlines a quantitative and data-driven study of the mixed convection heat transfer processes that concern Cu-water nanofluids in a Γ-shaped enclosure with one to five rotating cylinders. The dimensionless equations of mass, momentum, and energy are solved using the finite element method as implemented in the COMSOL Multiphysics 6.3 software in different rotating Reynolds numbers and cylinder geometries. An artificial Neural Network that is trained using Bayesian Regularization on data produced by the COMSOL is utilized to estimate the average Nusselt numbers. The analysis is conducted for a wide range of rotational… More >

  • Open Access

    ARTICLE

    Double Diffusion Convection in Sisko Nanofluids with Thermal Radiation and Electroosmotic Effects: A Morlet-Wavelet Neural Network Approach

    Arshad Riaz1,*, Misbah Ilyas1, Muhammad Naeem Aslam2, Safia Akram3, Sami Ullah Khan4, Ghaliah Alhamzi5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3481-3509, 2025, DOI:10.32604/cmes.2025.072513 - 23 December 2025

    Abstract Peristaltic transport of non-Newtonian nanofluids with double diffusion is essential to biological engineering, microfluidics, and manufacturing processes. The authors tackle the key problem of Sisko nanofluids under double diffusion convection with thermal radiations and electroosmotic effects. The study proposes a solution approach by using Morlet-Wavelet Neural Networks that can effectively solve this complex problem by their superior ability in the capture of nonlinear dynamics. These convergence analyses were calculated across fifty independent runs. Theil’s Inequality Coefficient and the Mean Squared Error values range from 10−7 to 10−5 and 10−7 to 10−10, respectively. These values showed the proposed More >

  • Open Access

    ARTICLE

    MHD Convective Flow of CNT/Water-Nanofluid in a 3D Cavity Incorporating Hot Cross-Shaped Obstacle

    Faiza Benabdallah1, Kaouther Ghachem1, Walid Hassen2, Haythem Baya2, Hind Albalawi3, Lioua Kolsi4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1839-1861, 2025, DOI:10.32604/cmes.2025.071678 - 26 November 2025

    Abstract Current developments in magnetohydrodynamic (MHD) convection and nanofluid engineering technology have have greatly enhanced heat transfer performance in process systems, particularly through the use of carbon nanotube (CNT)–based fluids that offer exceptional thermal conductivity. Despite extensive research on MHD natural convection in enclosures, the combined effects of complex obstacle geometries, magnetic fields, and CNT nanofluids in three-dimensional configurations remain insufficiently explored. This research investigates MHD natural convection of carbon nanotube (CNT)-water nanofluid within a three-dimensional cavity. The study considers an inclined cross-shaped hot obstacle, a configuration not extensively explored in previous works. The work aims… More >

  • Open Access

    ARTICLE

    Numerical Analysis of Heat and Mass Transfer in Tangent Hyperbolic Fluids Using a Two-Stage Exponential Integrator with Compact Spatial Discretization

    Mairaj Bibi1, Muhammad Shoaib Arif 2, Yasir Nawaz3, Nabil Kerdid4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 537-569, 2025, DOI:10.32604/cmes.2025.070362 - 30 October 2025

    Abstract This study develops a high-order computational scheme for analyzing unsteady tangent hyperbolic fluid flow with variable thermal conductivity, thermal radiation, and coupled heat and mass transfer effects. A modified two-stage Exponential Time Integrator is introduced for temporal discretization, providing second-order accuracy in time. A compact finite difference method is employed for spatial discretization, yielding sixth-order accuracy at most grid points. The proposed framework ensures numerical stability and convergence when solving stiff, nonlinear parabolic systems arising in fluid flow and heat transfer problems. The novelty of the work lies in combining exponential integrator schemes with compact… More >

  • Open Access

    ARTICLE

    Role of Thermal Radiation Effect on Unsteady Dissipative MHD Mixed Convection of Hybrid Nanofluid over an Inclined Stretching Sheet with Chemical Reaction

    Shaik Mohammed Ibrahim1, Bhavanam Naga Lakshmi2, Chundru Maheswari3, Hasan Koten4,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1555-1574, 2025, DOI:10.32604/fhmt.2025.069392 - 31 October 2025

    Abstract Magnetohydrodynamic (MHD) radiative chemically reactive mixed convection flow of a hybrid nanofluid (Al2O3Cu/H2O) across an inclined, porous, and stretched sheet is examined in this study, along with its unsteady heat and mass transport properties. The hybrid nanofluid’s enhanced heat transfer efficiency is a major benefit in high-performance engineering applications. It is composed of two separate nanoparticles suspended in a base fluid and is chosen for its improved thermal properties. Thermal radiation, chemical reactions, a transverse magnetic field, surface stretching with time, injection or suction through the porous medium, and the effect of inclination, which introduces gravity-induced… More >

  • Open Access

    ARTICLE

    Magnetohydrodynamic Jeffrey Nanofluid Flow across an Inclined Stretching Sheet via Porous Media with Slip Effects

    Pennelli Saila Kumari1, Shaik Mohammed Ibrahim1,*, Prathi Vijaya Kumar2, Giulio Lorenzini3,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1639-1660, 2025, DOI:10.32604/fhmt.2025.069063 - 31 October 2025

    Abstract In this paper, the authors examine various slip effects on the magnetic field and thermal radiative impacts on the flow, mass and heat transfer of a Jeffrey nanofluid over a 2-dimensional inclined stretching sheet by a porous media. The offered work is modelled to be in the form of a combination of coupled highly nonlinear partial differential equations in dimensional contexts. Governing equations were obtained, dimensionless parameters were defined in terms of similarity parameters, and the solutions were obtained by the Homotopy Analysis Method (HAM). The analysis is significant as the effects of viscosity are… More >

  • Open Access

    ARTICLE

    Heat Transfer Analysis of Temperature-Sensitive Ternary Nanofluid in MHD and Porous Media Flow: Influence of Volume Fraction and Shape

    Barkilean Jaismitha1, Jagadeesan Sasikumar2,*, Samad Noeiaghdam3,*, Unai Fernandez-Gamiz4, Thirugnanasambandam Arunkumar1

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1529-1554, 2025, DOI:10.32604/fhmt.2025.067869 - 31 October 2025

    Abstract The present study investigates the dynamic behavior of a ternary-hybrid nanofluid within a tapered asymmetric channel, focusing on the impact of unsteady oscillatory flow under the influence of a magnetic field. This study addresses temperature-sensitive water transport mechanisms relevant to industrial applications such as thermal management and energy-efficient fluid transport. By suspending nanoparticles of diverse shapes-platelets, blades, and spheres in a hybrid base fluid comprising cobalt ferrite, magnesium oxide, and graphene oxide, the study examines the influence of both small and large volume fraction values. The governing equations are converted into a dimensionless form. With More >

  • Open Access

    ARTICLE

    Analysis of Heat Transfer inside Rectangular Micro-Channel with Wavy Surface and Hybrid Nanofluids

    Banan Najim Abdullah1, Karam Hashim Mohammed1, Ammar Hassan Soheel1, Bashar Mahmood Ali2, Omar Rafae Alomar1,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1681-1700, 2025, DOI:10.32604/fhmt.2025.066814 - 31 October 2025

    Abstract The current work aims to numerically investigate the impact of using (50% ZnO and 50% Al2O3) hybrid nanofluid (HNf) on the performance of convective heat transfer inside a horizontal wavy micro-channel. This issue represents a novel approach that has not been extensively covered in previous research and provides more valuable insights into the performance of HNfs in complex flow geometries. The conjugate heat transfer approach is used to demonstrate the influence of adding hybrid nanoparticles (50% Al2O3 and 50% ZnO) to pure water on the rate of heat transfer. The governing equations are numerically solved by… More >

Displaying 1-10 on page 1 of 209. Per Page