Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (159)
  • Open Access

    ARTICLE

    Mixed Convection of a Nanofluid in a Vertical Anisotropic Porous Channel with Heated/Cooled Walls

    S. Slama1, H. Kahalerras1, B. Fersadou1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.3, pp. 155-172, 2017, DOI:10.3970/fdmp.2017.013.155

    Abstract A numerical study is conducted to investigate the problem of mixed convection of a nanofluid in a vertical porous channel with one wall heated and the other cooled. The Darcy-Brinkman-Forchheimer model is used to describe the flow in the porous medium, considered as anisotropic in thermal conductivity, and the two-phase approach is adopted to simulate the motion of the nanofluid. The governing equations with the associated boundary conditions are solved by the finite volume method. The parametric study is focused on the variation of the Richardson number Ri, the heat fluxes ratio Rq, the Darcy number… More >

  • Open Access

    ARTICLE

    Lattice Boltzmann Method for Simulation of Nanoparticle Brownian Motion and Magnetic Field Effects on Free Convection in A Nanofluid-filled Open Cavity with Heat Generation/Absorption and Non Uniform Heating on the Left Solid Vertical Wall

    Mohamed Ammar Abbassi1, Bouchmel Mliki1, Ridha Djebali1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.2, pp. 59-83, 2017, DOI:10.3970/fdmp.2017.013.059

    Abstract This article reports a numerical study of nanoparticle Brownian motion and magnetic field effects by natural convection in a nanofluid-filled open cavity with non uniform boundary condition. Lattice Boltzmann Method (LBM) is used to simulate nanofluid flow and heat transfer. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo-Kleinstreuer-Li) correlation. In this model effect of Brownian motion on the effective thermal conductivity and effective viscosity is considered and examined. Simulations have been carried out for the pertinent parameters in the following ranges: Rayleigh number (Ra=103−106), Hartmann number (Ha=0-60), nanoparticle volume concentration (Φ=0–0.04) and More >

  • Open Access

    ARTICLE

    Cooling of electronic components using nanofluids

    M. Zitoune1, 2 , O. Ourrad Meziani2, B. Meziani2, M. Adnani1, 2

    FDMP-Fluid Dynamics & Materials Processing, Vol.12, No.1, pp. 33-55, 2016, DOI:10.3970/fdmp.2016.012.033

    Abstract A finite volume code used for detailed analysis of forced-convection flow in a horizontal channel containing eight heat sources simulating electronic components. The study deals the effect of variations of Reynolds number, the volume fraction and the good choice of type of nanoparticles added to the base fluid. The study shows that the rate of heat transfer increases with increasing Reynolds number and the volume fraction of nanofluids but not infinitely. The analysis of the dynamic and thermal field shows that the heat transfer is improved, with the increase in the Reynolds number and the More >

  • Open Access

    ARTICLE

    Natural Convection in a Square Cavity Filled with Nanofluids

    Abd el malik Bouchoucha1,2, Rachid Bessaïh1

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.3, pp. 279-300, 2015, DOI:10.3970/fdmp.2015.011.279

    Abstract The present paper deals with a numerical study of natural convection in a square cavity filled with a nanofluid. The left and right vertical walls of the cavity are maintained at a local temperature Th (heat source) and a local cold temperature TC, respectively. Horizontal walls are assumed to be adiabatic. The governing equations are discretized by using the finite volume method and solved by the SIMPLER algorithm. Our computer fortran code is validated through comparison with numerical results found in the literature. Results are presented in terms of streamlines, isotherms, local and average Nusselt numbers More >

  • Open Access

    ARTICLE

    Analysis of Natural Convection in a Nanofluid-Filled Open Cavity with a Sinusoidal Boundary Condition in the Presence of a Magnetic Field

    Imen Mejri1,2, Ahmed Mahmoudi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.2, pp. 171-195, 2015, DOI:10.3970/fdmp.2015.011.171

    Abstract This paper examines natural convection in an open cavity with a sinusoidal thermal boundary condition. The cavity is filled with a water-Al2O3 nanofluid and subjected to a magnetic field. The Lattice Boltzmann method (LBM) is applied to solve the coupled equations of flow and temperature. The study has been carried out considering parameters in the following ranges: Rayleigh number of the base fluid, Ra = 103 to 106, Hartmann number varied from Ha = 0 to 60, phase deviation γ = 0, π4, π2, 3 π4 and π and solid volume fraction of nanoparticles between π = More >

  • Open Access

    ARTICLE

    Lattice Boltzmann Simulation of MHD Double Dispersion Natural Convection in a C-shaped Enclosure in the Presence of a Nanofluid

    Bouchmel Mliki, Mohamed Ammar Abbassi, Ahmed Omri

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.1, pp. 87-114, 2015, DOI:10.3970/fdmp.2015.011.087

    Abstract MHD double-diffusive natural convective flow in a C-shaped enclosure filled with a Cu/Water nanofluid is investigated numerically using the Lattice Boltzmann Method (LBM). Much care is devoted to the validation of the numerical code. The effects exerted on the flow, concentration and temperature fields by different parameters such as the Rayleigh number (103−106), the nanoparticle volume concentration (0−0,1), the Lewis number (1-5), the Hartmann number (0−30) and different types of nanoparticles (Cu, Ag, Al2O3 and TiO3 are assessed in detail. Results for stream function, Nusselt and Sherwood numbers are presented and discussed for various parametric conditions. Results More >

  • Open Access

    ARTICLE

    MHD Natural Convection in a Nanofluid-filled Enclosure with Non-uniform Heating on Both Side Walls

    Imen Mejri1,2, Ahmed Mahmoudi1, Mohamed Ammar Abbassi1, Ahmed Omri1

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.1, pp. 83-114, 2014, DOI:10.3970/fdmp.2014.010.083

    Abstract This study examines natural convection in a square enclosure filled with a water-Al2O3 nanofluid and subjected to a magnetic field. The side walls of the cavity have spatially varying sinusoidal temperature distributions. The horizontal walls are adiabatic. A Lattice Boltzmann method (LBM) is applied to solve the governing equations for fluid velocity and temperature. The following parameters and related ranges are considered: Rayleigh number of the base fluid, from Ra=103 to 106, Hartmann number from Ha=0 to 90, phase deviation (γ =0, π/4, π/2, 3π/4 and π) and solid volume fraction of the nanoparticles between ø = 0 and More >

  • Open Access

    ARTICLE

    Optimal Formulation of Nanofluids for Maximum Free Convection Heat Transfer from Horizontal Isothermal Cylinders

    Massimo Corcione1

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.2, pp. 175-200, 2011, DOI:10.3970/fdmp.2011.007.175

    Abstract Free convection heat transfer in nanofluids from horizontal isothermal cylinders is investigated theoretically. The main idea upon which the present work is based is that nanofluids behave more like a single-phase fluid rather than like a conventional solid-liquid mixture. This assumption implies that all the convective heat transfer correlations available in the literature for single-phase flows can be extended to nanoparticle suspensions, provided that the thermophysical properties appearing in them are the nanofluid effective properties calculated at the reference temperature. In this connection, two empirical equations, based on a wide variety of experimental data reported… More >

  • Open Access

    ARTICLE

    Rayleigh-Marangoni Instability of Binary Fluids with Small Lewis Number and Nano-Fluids in the Presence of the Soret Effect

    A. Podolny1,2, A. Nepomnyashchy3, A. Oron4

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.1, pp. 13-40, 2010, DOI:10.3970/fdmp.2010.006.013

    Abstract A general model for two-component transport phenomena applicable for both nanofluids and binary solutions is formulated. We investigate a combined long-wave Marangoni and Rayleigh instability of a quiescent state of a binary (nano-) liquid layer with a non-deformable free surface. The layer is heated from below or from above. The concentration gradient is induced due to the Soret effect. A typical behavior of monotonic and oscillatory instability boundaries is examined in the limit of asymptotically small Lewis numbers and poorly conducting boundaries in the two important long-wave domains k~Bi1/2and k~Bi1/4. More >

Displaying 151-160 on page 16 of 159. Per Page