Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (71)
  • Open Access

    ARTICLE

    Artificial Neural Network Model for Thermal Conductivity Estimation of Metal Oxide Water-Based Nanofluids

    Nikhil S. Mane1, Sheetal Kumar Dewangan2,*, Sayantan Mukherjee3, Pradnyavati Mane4, Deepak Kumar Singh1, Ravindra Singh Saluja5

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.072090 - 10 November 2025

    Abstract The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids. Researchers rely on experimental investigations to explore nanofluid properties, as it is a necessary step before their practical application. As these investigations are time and resource-consuming undertakings, an effective prediction model can significantly improve the efficiency of research operations. In this work, an Artificial Neural Network (ANN) model is developed to predict the thermal conductivity of metal oxide water-based nanofluid. For this, a comprehensive set of 691 data points was collected from the literature. This dataset is split More >

  • Open Access

    ARTICLE

    Neuro-Fuzzy Computational Dynamics of Reactive Hybrid Nanofluid Flow Inside a Squarely Elevated Riga Tunnel with Ramped Thermo-Solutal Conditions under Strong Electromagnetic Rotation

    Asgar Ali1,*, Nayan Sardar2, Poly Karmakar3, Sanatan Das4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3563-3626, 2025, DOI:10.32604/cmes.2025.074082 - 23 December 2025

    Abstract Hybrid nanofluids have gained significant attention for their superior thermal and rheological characteristics, offering immense potential in energy conversion, biomedical transport, and electromagnetic flow control systems. Understanding their dynamic behavior under coupled magnetic, rotational, and reactive effects is crucial for the development of efficient thermal management technologies. This study develops a neuro-fuzzy computational framework to examine the dynamics of a reactive Cu–TiO2–H2O hybrid nanofluid flowing through a squarely elevated Riga tunnel. The governing model incorporates Hall and ion-slip effects, thermal radiation, and first-order chemical reactions under ramped thermo-solutal boundary conditions and rotational electromagnetic forces. Closed-form analytical… More >

  • Open Access

    ARTICLE

    Double Diffusion Convection in Sisko Nanofluids with Thermal Radiation and Electroosmotic Effects: A Morlet-Wavelet Neural Network Approach

    Arshad Riaz1,*, Misbah Ilyas1, Muhammad Naeem Aslam2, Safia Akram3, Sami Ullah Khan4, Ghaliah Alhamzi5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3481-3509, 2025, DOI:10.32604/cmes.2025.072513 - 23 December 2025

    Abstract Peristaltic transport of non-Newtonian nanofluids with double diffusion is essential to biological engineering, microfluidics, and manufacturing processes. The authors tackle the key problem of Sisko nanofluids under double diffusion convection with thermal radiations and electroosmotic effects. The study proposes a solution approach by using Morlet-Wavelet Neural Networks that can effectively solve this complex problem by their superior ability in the capture of nonlinear dynamics. These convergence analyses were calculated across fifty independent runs. Theil’s Inequality Coefficient and the Mean Squared Error values range from 10−7 to 10−5 and 10−7 to 10−10, respectively. These values showed the proposed More >

  • Open Access

    ARTICLE

    Analysis of Heat Transfer inside Rectangular Micro-Channel with Wavy Surface and Hybrid Nanofluids

    Banan Najim Abdullah1, Karam Hashim Mohammed1, Ammar Hassan Soheel1, Bashar Mahmood Ali2, Omar Rafae Alomar1,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1681-1700, 2025, DOI:10.32604/fhmt.2025.066814 - 31 October 2025

    Abstract The current work aims to numerically investigate the impact of using (50% ZnO and 50% Al2O3) hybrid nanofluid (HNf) on the performance of convective heat transfer inside a horizontal wavy micro-channel. This issue represents a novel approach that has not been extensively covered in previous research and provides more valuable insights into the performance of HNfs in complex flow geometries. The conjugate heat transfer approach is used to demonstrate the influence of adding hybrid nanoparticles (50% Al2O3 and 50% ZnO) to pure water on the rate of heat transfer. The governing equations are numerically solved by… More >

  • Open Access

    ARTICLE

    Hybrid Nanofluids Mixed Convection inside a Partially Heated Square Enclosure with Driven Sidewalls

    Meriem Bounib1, Aicha Bouhezza2,3,*, Abdelkrim Khelifa4, Mohamed Teggar5, Hasan Köten6, Aissa Atia7, Yassine Cherif 8

    Frontiers in Heat and Mass Transfer, Vol.23, No.4, pp. 1323-1350, 2025, DOI:10.32604/fhmt.2025.065254 - 29 August 2025

    Abstract This study investigates laminar convection in three regimes (forced convection, mixed convection, and natural convection) of a bi-nanofluid (Cu-Al2O3-water)/mono-nanofluid (Al2O3-water) inside a square enclosure of sliding vertical walls which are kept at cold temperature and moving up, down, or in opposite directions. The enclosure bottom is heated partially by a central heat source of various sizes while the horizontal walls are considered adiabatic. The thermal conductivity and dynamic viscosity are dependent on temperature and nanoparticle size. The conservation equations are implemented in the solver ANSYS R2 (2020). The numerical predictions are successfully validated by comparison with… More >

  • Open Access

    REVIEW

    Thermo-Hydrodynamic Characteristics of Hybrid Nanofluids for Chip-Level Liquid Cooling in Data Centers: A Review of Numerical Investigations

    Yifan Li1, Congzhe Zhu1, Zhihan Lyu2,*, Bin Yang1,3,*, Thomas Olofsson3

    Energy Engineering, Vol.122, No.9, pp. 3525-3553, 2025, DOI:10.32604/ee.2025.067902 - 26 August 2025

    Abstract The growth of computing power in data centers (DCs) leads to an increase in energy consumption and noise pollution of air cooling systems. Chip-level cooling with high-efficiency coolant is one of the promising methods to address the cooling challenge for high-power devices in DCs. Hybrid nanofluid (HNF) has the advantages of high thermal conductivity and good rheological properties. This study summarizes the numerical investigations of HNFs in mini/micro heat sinks, including the numerical methods, hydrothermal characteristics, and enhanced heat transfer technologies. The innovations of this paper include: (1) the characteristics, applicable conditions, and scenarios of… More >

  • Open Access

    ARTICLE

    Thermal Performance Analysis of Shell and Tube Heat Exchanger Using Hybrid Nanofluids Based on Al2O3, TiO2, and ZnO Nanoparticles

    Ans Ahmed Memon1, Laveet Kumar1,2,*, Abdul Ghafoor Memon1, Khanji Harijan1, Ahmad K. Sleiti2

    Frontiers in Heat and Mass Transfer, Vol.23, No.3, pp. 833-856, 2025, DOI:10.32604/fhmt.2025.064805 - 30 June 2025

    Abstract Climate change, rising fuel prices, and fuel security are some challenges that have emerged and have grown worldwide. Therefore, to overcome these obstacles, highly efficient thermodynamic devices and heat recovery systems must be introduced. According to reports, much industrial waste heat is lost as flue gas from boilers, heating plants, etc. The primary objective of this study is to investigate and compare unary (Al2O3) thermodynamically, binary with three different combinations of nanoparticles namely (Al2O3 + TiO2, TiO2 + ZnO, Al2O3 + ZnO) and ternary (Al2O3 + TiO2 + ZnO) as a heat transfer fluid. Initially, three different types of… More > Graphic Abstract

    Thermal Performance Analysis of Shell and Tube Heat Exchanger Using Hybrid Nanofluids Based on Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, and ZnO Nanoparticles

  • Open Access

    ARTICLE

    SRM Simulation of Thermal Convective on MHD Nanofluids across Moving Flat Plate

    Shahina Akter1,2, Muhammad Amer Qureshi3, Mohammad Ferdows1,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.3, pp. 1013-1036, 2025, DOI:10.32604/fhmt.2025.062311 - 30 June 2025

    Abstract This study explores free convective heat transfer in an electrically conducting nanofluid flow over a moving semi-infinite flat plate under the influence of an induced magnetic field and viscous dissipation. The velocity and magnetic field vectors are aligned at a distance from the plate. The Spectral Relaxation Method (SRM) is used to numerically solve the coupled nonlinear partial differential equations, analyzing the effects of the Eckert number on heat and mass transfer. Various nanofluids containing , , , and nanoparticles are examined to assess how external magnetic fields influence fluid behavior. Key parameters, including the More >

  • Open Access

    ARTICLE

    Performance Analysis of Solar Porous Media Collector Integrated with Thermal Energy Storage Charged by CuFe2O4/Water Nanofluids Coil Tubes

    Ahmad Mola1, Sahira H. Ibrahim1, Nagham Q. Shari2, Hasanain A. Abdul Wahhab3,*

    Energy Engineering, Vol.122, No.6, pp. 2239-2255, 2025, DOI:10.32604/ee.2025.061590 - 29 May 2025

    Abstract High-efficiency solar energy systems are characterized by their designs, which primarily rely on effective concentration and conversion methods of solar radiation. Evaluation of the performance enhancement of flat plate solar collectors by integration with thermal energy storage could be achieved through simulation of proposed designs. The work aims to analyze a new solar collector integrated with a porous medium and shell and coiled tube heat exchanger. The heat transfer enhancement was investigated by varying the geometrical parameters in shell and helically coiled tubes operating with CuFe2O4/water with different volume fractions of 0.02%, 0.05%, and 0.1 vol.%.… More >

  • Open Access

    ARTICLE

    On Heat Transfer in Oblique Stagnation Point Nanofluid Flow with Temperature Dependent Viscosity

    Rabail Tabassum1, M. Kamran1, Khalil Ur Rehman2,*, Wasfi Shatanawi2,3, Rashid Mehmood4

    Frontiers in Heat and Mass Transfer, Vol.23, No.2, pp. 577-599, 2025, DOI:10.32604/fhmt.2025.059466 - 25 April 2025

    Abstract This study aims to elucidate the connection between the shape factor of GO (graphene oxide) nanoparticles and the behavior of blood-based non-aligned, 2-dimensional, incompressible nanofluid flow near stagnation point, under the influence of temperature-dependent viscosity. Appropriate similarity transformations are employed to transform the non-linear partial differential equations (PDEs) into ordinary differential equations (ODEs). The governing equations are subsequently resolved by utilizing the shooting method. The modified Maxwell model is used to estimate the thermal efficiency of the nanofluid affected by different nanoparticle shapes. The impact of various shapes of GO nanoparticles on the velocity and… More >

Displaying 1-10 on page 1 of 71. Per Page