Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,303)
  • Open Access

    ARTICLE

    Prediction of Dendritic Parameters and Macro Hardness Variation in PermanentMould Casting of Al-12%Si Alloys Using Artificial Neural Networks

    E. Abhilash1, M.A. Joseph1, Prasad Krishna1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.3, pp. 211-220, 2006, DOI:10.3970/fdmp.2006.002.211

    Abstract Aluminium-Silicon alloys are in high de-mand as an engineering material for automotive,aerospace and other engineering applications. Mechanical properties of Al-Si alloys depend not only on chemical composition but also more importantly on microstructural features such as dendritic alpha-aluminiumphase and eutectic silicon particles. As an additive to Al-Si alloys, sodium improves mechanical properties byforming finer and fewer needles like microstructures.Thus, prediction of the macro and microstructures obtained at the end of the solidification is of great interest for the manufacturer of aluminium alloys. Neuralnetworks are sophisticated nonlinear regression routinesthat, when properly “trained”, allow for the identificationof More >

  • Open Access

    ARTICLE

    An Image Classification Method Based on Deep Neural Network with Energy Model

    Yang Yang1,*, Jinbao Duan1, Haitao Yu1, Zhipeng Gao1, Xuesong Qiu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.3, pp. 555-575, 2018, DOI:10.31614/cmes.2018.04249

    Abstract The development of deep learning has revolutionized image recognition technology. How to design faster and more accurate image classification algorithms has become our research interests. In this paper, we propose a new algorithm called stochastic depth networks with deep energy model (SADIE), and the model improves stochastic depth neural network with deep energy model to provide attributes of images and analysis their characteristics. First, the Bernoulli distribution probability is used to select the current layer of the neural network to prevent gradient dispersion during training. Then in the backpropagation process, the energy function is designed More >

  • Open Access

    ARTICLE

    AdaBoosting Neural Network for Short-Term Wind Speed Forecasting Based on Seasonal Characteristics Analysis and Lag Space Estimation

    Haijian Shao1, 2, Xing Deng1, 2, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.114, No.3, pp. 277-293, 2018, DOI:10.3970/cmes.2018.114.277

    Abstract High accurary in wind speed forcasting remains hard to achieve due to wind’s random distribution nature and its seasonal characteristics. Randomness, intermittent and nonstationary usually cause the portion problem of the wind speed forecasting. Seasonal characteristics of wind speed means that its feature distribution is inconsistent. This typically results that the persistence of excitation for modeling can not be guaranteed, and may severely reduce the possibilities of high precise forecasting model. In this paper, we proposed two effective solutions to solve the problems caused by the randomness and seasonal characteristics of the wind speed. (1)… More >

  • Open Access

    ARTICLE

    Ensemble Recurrent Neural Network-Based Residual Useful Life Prognostics of Aircraft Engines

    Jun Wu1,*, Kui Hu1, Yiwei Cheng2, Ji Wang1, Chao Deng2,*, Yuanhan Wang3

    Structural Durability & Health Monitoring, Vol.13, No.3, pp. 317-329, 2019, DOI:10.32604/sdhm.2019.05571

    Abstract Residual useful life (RUL) prediction is a key issue for improving efficiency of aircraft engines and reducing their maintenance cost. Owing to various failure mechanism and operating environment, the application of classical models in RUL prediction of aircraft engines is fairly difficult. In this study, a novel RUL prognostics method based on using ensemble recurrent neural network to process massive sensor data is proposed. First of all, sensor data obtained from the aircraft engines are preprocessed to eliminate singular values, reduce random fluctuation and preserve degradation trend of the raw sensor data. Secondly, three kinds More >

  • Open Access

    ARTICLE

    Applying Neural Networks for Tire Pressure Monitoring Systems

    Alex Kost1, Wael A. Altabey2,3,4, Mohammad Noori1,2,*, Taher Awad4

    Structural Durability & Health Monitoring, Vol.13, No.3, pp. 247-266, 2019, DOI:10.32604/sdhm.2019.07025

    Abstract A proof-of-concept indirect tire-pressure monitoring system is developed using artificial neural networks to identify the tire pressure of a vehicle tire. A quarter-car model was developed with MATLAB and Simulink to generate simulated accelerometer output data. Simulation data are used to train and evaluate a recurrent neural network with long short-term memory blocks (RNN-LSTM) and a convolutional neural network (CNN) developed in Python with Tensorflow. Bayesian Optimization via SigOpt was used to optimize training and model parameters. The predictive accuracy and training speed of the two models with various parameters are compared. Finally, future work More >

  • Open Access

    ABSTRACT

    Probabilistic Neural Network for Predicting the Stability numbers of Breakwater Armor Blocks

    Doo Kie Kim1, Dong Hyawn Kim2, Seong Kyu Chang1, Sang Kil Chang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.2, No.2, pp. 35-40, 2007, DOI:10.3970/icces.2007.002.035

    Abstract The stability numbers determining the Armor units are very important to design breakwaters, because armor units are designed for defending breakwaters from repeated wave loads. This study presents a probabilistic neural network (PNN) for predicting the stability number of armor blocks of breakwaters. PNN used the experimental data of van der Meer as train and test data. The estimated results of PNN were compared with those of empirical formula and previous artificial neural network (ANN) model. The comparison results showed the efficiency of the proposed method in the prediction of the stability numbers in spite More >

  • Open Access

    ABSTRACT

    Advanced Probabilistic Neural Network for the Prediction of Concrete Strength

    Doo Kie Kim1, Seong Kyu Chang1, Sang Kil Chang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.2, No.1, pp. 29-34, 2007, DOI:10.3970/icces.2007.002.029

    Abstract Accurate and realistic strength estimation before the placement of concrete is highly desirable. In this study, the advanced probabilistic neural network (APNN) was proposed to reflect the global probability density function by summing the heterogeneous local probability density function automatically determined in the individual standard deviation of variables. Currently, the estimation of the compressive strength of concrete is performed by a probabilistic neural network (PNN) on the basis of concrete mix proportions, and the PNN is improved by the iteration method. However, an empirical method has been incorporated to specify the smoothing parameter in the More >

  • Open Access

    ARTICLE

    A Self-Organizing Memory Neural Network for Aerosol Concentration Prediction

    Qiang Liu1,*, Yanyun Zou2,3, Xiaodong Liu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.3, pp. 617-637, 2019, DOI:10.32604/cmes.2019.06272

    Abstract Haze-fog, which is an atmospheric aerosol caused by natural or man-made factors, seriously affects the physical and mental health of human beings. PM2.5 (a particulate matter whose diameter is smaller than or equal to 2.5 microns) is the chief culprit causing aerosol. To forecast the condition of PM2.5, this paper adopts the related the meteorological data and air pollutes data to predict the concentration of PM2.5. Since the meteorological data and air pollutes data are typical time series data, it is reasonable to adopt a machine learning method called Single Hidden-Layer Long Short-Term Memory Neural Network (SSHL-LSTMNN)… More >

  • Open Access

    ARTICLE

    Ship Trajectory Prediction Based on BP Neural Network

    Hai Zhou1,2,*, Yaojie Chen1,2, Sumin Zhang3

    Journal on Artificial Intelligence, Vol.1, No.1, pp. 29-36, 2019, DOI:10.32604/jai.2019.05939

    Abstract In recent years, with the prosperity of world trade, the water transport industry has developed rapidly, the number of ships has surged, and ship safety accidents in busy waters and complex waterways have become more frequent. Predicting the movement of the ship and analyzing the trajectory of the ship are of great significance for improving the safety level of the ship. Aiming at the multi-dimensional characteristics of ship navigation behavior and the accuracy and real-time requirements of ship traffic service system for ship trajectory prediction, a ship navigation trajectory prediction method combining ship automatic identification… More >

  • Open Access

    ARTICLE

    Remaining Useful Life Prediction of Rolling Bearings Based on Recurrent Neural Network

    Yimeng Zhai1, Aidong Deng1,*, Jing Li1,2, Qiang Cheng1, Wei Ren3

    Journal on Artificial Intelligence, Vol.1, No.1, pp. 19-27, 2019, DOI:10.32604/jai.2019.05817

    Abstract In order to acquire the degradation state of rolling bearings and achieve predictive maintenance, this paper proposed a novel Remaining Useful Life (RUL) prediction of rolling bearings based on Long Short Term Memory (LSTM) neural net-work. The method is divided into two parts: feature extraction and RUL prediction. Firstly, a large number of features are extracted from the original vibration signal. After correlation analysis, the features that can better reflect the degradation trend of rolling bearings are selected as input of prediction model. In the part of RUL prediction, LSTM that making full use of More >

Displaying 1241-1250 on page 125 of 1303. Per Page