Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,438)
  • Open Access

    ARTICLE

    Artificial Neural Networks for Optimizing Alumina Al2O3 Particle and Droplet Behavior in 12kK Ar-H2 Atmospheric Plasma Spraying

    Ridha Djebali1,*, Bernard Pateyron2, Mokhtar Ferhi1, Mohamed Ouerhani3, Karim Khemiri1, Montassar Najari1, M. Ammar Abbassi4, Chohdi Amri5, Ridha Ennetta6, Zied Driss7

    Frontiers in Heat and Mass Transfer, Vol.23, No.2, pp. 441-461, 2025, DOI:10.32604/fhmt.2025.063375 - 25 April 2025

    Abstract This paper investigates the application of Direct Current Atmospheric Plasma Spraying (DC-APS) as a versatile thermal spray technique for the application of coatings with tailored properties to various substrates. The process uses a high-speed, high-temperature plasma jet to melt and propel the feedstock powder particles, making it particularly useful for improving the performance and durability of components in renewable energy systems such as solar cells, wind turbines, and fuel cells. The integration of nanostructured alumina (Al2O3) thin films into multilayer coatings is considered a promising advancement that improves mechanical strength, thermal stability, and environmental resistance. The More >

  • Open Access

    ARTICLE

    Digital Radiography-Based Pneumoconiosis Diagnosis via Vision Transformer Networks

    Qingpeng Wei1,#, Wenai Song1,#, Lizhen Fu1, Yi Lei2, Qing Wang2,*

    Journal on Artificial Intelligence, Vol.7, pp. 39-53, 2025, DOI:10.32604/jai.2025.063188 - 23 April 2025

    Abstract Pneumoconiosis, a prevalent occupational lung disease characterized by fibrosis and impaired lung function, necessitates early and accurate diagnosis to prevent further progression and ensure timely clinical intervention. This study investigates the potential application of the Vision Transformer (ViT) deep learning model for automated pneumoconiosis classification using digital radiography (DR) images. We utilized digital X-ray images from 934 suspected pneumoconiosis patients. A U-Net model was applied for lung segmentation, followed by Canny edge detection to divide the lungs into six anatomical regions. The segmented images were augmented and used to train the ViT model. Model component… More >

  • Open Access

    ARTICLE

    A Deep Learning Framework for Arabic Cyberbullying Detection in Social Networks

    Yahya Tashtoush1,*, Areen Banysalim1, Majdi Maabreh2, Shorouq Al-Eidi3, Ola Karajeh4, Plamen Zahariev5

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3113-3134, 2025, DOI:10.32604/cmc.2025.062724 - 16 April 2025

    Abstract Social media has emerged as one of the most transformative developments on the internet, revolutionizing the way people communicate and interact. However, alongside its benefits, social media has also given rise to significant challenges, one of the most pressing being cyberbullying. This issue has become a major concern in modern society, particularly due to its profound negative impacts on the mental health and well-being of its victims. In the Arab world, where social media usage is exceptionally high, cyberbullying has become increasingly prevalent, necessitating urgent attention. Early detection of harmful online behavior is critical to… More >

  • Open Access

    ARTICLE

    Priority-Aware Resource Allocation for VNF Deployment in Service Function Chains Based on Graph Reinforcement Learning

    Seyha Ros1,#, Seungwoo Kang1,#, Taikuong Iv1, Inseok Song1, Prohim Tam2, Seokhoon Kim1,3,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 1649-1665, 2025, DOI:10.32604/cmc.2025.062716 - 16 April 2025

    Abstract Recently, Network Functions Virtualization (NFV) has become a critical resource for optimizing capability utilization in the 5G/B5G era. NFV decomposes the network resource paradigm, demonstrating the efficient utilization of Network Functions (NFs) to enable configurable service priorities and resource demands. Telecommunications Service Providers (TSPs) face challenges in network utilization, as the vast amounts of data generated by the Internet of Things (IoT) overwhelm existing infrastructures. IoT applications, which generate massive volumes of diverse data and require real-time communication, contribute to bottlenecks and congestion. In this context, Multi-access Edge Computing (MEC) is employed to support resource… More >

  • Open Access

    ARTICLE

    Real-Time Proportional-Integral-Derivative (PID) Tuning Based on Back Propagation (BP) Neural Network for Intelligent Vehicle Motion Control

    Liang Zhou1, Qiyao Hu1,2,3,*, Xianlin Peng4,5, Qianlong Liu6

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2375-2401, 2025, DOI:10.32604/cmc.2025.061894 - 16 April 2025

    Abstract Over 1.3 million people die annually in traffic accidents, and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems. In modern industrial and technological applications and collaborative edge intelligence, control systems are crucial for ensuring efficiency and safety. However, deficiencies in these systems can lead to significant operational risks. This paper uses edge intelligence to address the challenges of achieving target speeds and improving efficiency in vehicle control, particularly the limitations of traditional Proportional-Integral-Derivative (PID) controllers in managing nonlinear and time-varying dynamics, such as varying road conditions… More >

  • Open Access

    ARTICLE

    A Lightweight Convolutional Neural Network with Squeeze and Excitation Module for Security Authentication Using Wireless Channel

    Xiaoying Qiu1,*, Xiaoyu Ma1, Guangxu Zhao1, Jinwei Yu2, Wenbao Jiang1, Zhaozhong Guo1, Maozhi Xu3

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2025-2040, 2025, DOI:10.32604/cmc.2025.061869 - 16 April 2025

    Abstract Physical layer authentication (PLA) in the context of the Internet of Things (IoT) has gained significant attention. Compared with traditional encryption and blockchain technologies, PLA provides a more computationally efficient alternative to exploiting the properties of the wireless medium itself. Some existing PLA solutions rely on static mechanisms, which are insufficient to address the authentication challenges in fifth generation (5G) and beyond wireless networks. Additionally, with the massive increase in mobile device access, the communication security of the IoT is vulnerable to spoofing attacks. To overcome the above challenges, this paper proposes a lightweight deep More >

  • Open Access

    ARTICLE

    GMS: A Novel Method for Detecting Reentrancy Vulnerabilities in Smart Contracts

    Dawei Xu1,2, Fan Huang1, Jiaxin Zhang1, Yunfang Liang1, Baokun Zheng3,*, Jian Zhao1

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2207-2220, 2025, DOI:10.32604/cmc.2025.061455 - 16 April 2025

    Abstract With the rapid proliferation of Internet of Things (IoT) devices, ensuring their communication security has become increasingly important. Blockchain and smart contract technologies, with their decentralized nature, provide strong security guarantees for IoT. However, at the same time, smart contracts themselves face numerous security challenges, among which reentrancy vulnerabilities are particularly prominent. Existing detection tools for reentrancy vulnerabilities often suffer from high false positive and false negative rates due to their reliance on identifying patterns related to specific transfer functions. To address these limitations, this paper proposes a novel detection method that combines pattern matching… More >

  • Open Access

    ARTICLE

    SA-ResNet: An Intrusion Detection Method Based on Spatial Attention Mechanism and Residual Neural Network Fusion

    Zengyu Cai1,*, Yuming Dai1, Jianwei Zhang2,3,*, Yuan Feng4

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3335-3350, 2025, DOI:10.32604/cmc.2025.061206 - 16 April 2025

    Abstract The rapid development and widespread adoption of Internet technology have significantly increased Internet traffic, highlighting the growing importance of network security. Intrusion Detection Systems (IDS) are essential for safeguarding network integrity. To address the low accuracy of existing intrusion detection models in identifying network attacks, this paper proposes an intrusion detection method based on the fusion of Spatial Attention mechanism and Residual Neural Network (SA-ResNet). Utilizing residual connections can effectively capture local features in the data; by introducing a spatial attention mechanism, the global dependency relationships of intrusion features can be extracted, enhancing the intrusion More >

  • Open Access

    ARTICLE

    Token Masked Pose Transformers Are Efficient Learners

    Xinyi Song1, Haixiang Zhang1,*, Shaohua Li2

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2735-2750, 2025, DOI:10.32604/cmc.2025.059006 - 16 April 2025

    Abstract In recent years, Transformer has achieved remarkable results in the field of computer vision, with its built-in attention layers effectively modeling global dependencies in images by transforming image features into token forms. However, Transformers often face high computational costs when processing large-scale image data, which limits their feasibility in real-time applications. To address this issue, we propose Token Masked Pose Transformers (TMPose), constructing an efficient Transformer network for pose estimation. This network applies semantic-level masking to tokens and employs three different masking strategies to optimize model performance, aiming to reduce computational complexity. Experimental results show More >

  • Open Access

    ARTICLE

    A Privacy-Preserving Graph Neural Network Framework with Attention Mechanism for Computational Offloading in the Internet of Vehicles

    Aishwarya Rajasekar*, Vetriselvi Vetrian

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 225-254, 2025, DOI:10.32604/cmes.2025.062642 - 11 April 2025

    Abstract The integration of technologies like artificial intelligence, 6G, and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle applications. However, these advancements also generate a surge in data processing requirements, necessitating the offloading of vehicular tasks to edge servers due to the limited computational capacity of vehicles. Despite recent advancements, the robustness and scalability of the existing approaches with respect to the number of vehicles and edge servers and their resources, as well as privacy, remain a concern. In this paper, a lightweight… More >

Displaying 1-10 on page 1 of 1438. Per Page