Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,356)
  • Open Access

    ARTICLE

    A Recurrent Neural Network for Multimodal Anomaly Detection by Using Spatio-Temporal Audio-Visual Data

    Sameema Tariq1, Ata-Ur- Rehman2,3, Maria Abubakar2, Waseem Iqbal4, Hatoon S. Alsagri5, Yousef A. Alduraywish5, Haya Abdullah A. Alhakbani5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2493-2515, 2024, DOI:10.32604/cmc.2024.055787 - 18 November 2024

    Abstract In video surveillance, anomaly detection requires training machine learning models on spatio-temporal video sequences. However, sometimes the video-only data is not sufficient to accurately detect all the abnormal activities. Therefore, we propose a novel audio-visual spatiotemporal autoencoder specifically designed to detect anomalies for video surveillance by utilizing audio data along with video data. This paper presents a competitive approach to a multi-modal recurrent neural network for anomaly detection that combines separate spatial and temporal autoencoders to leverage both spatial and temporal features in audio-visual data. The proposed model is trained to produce low reconstruction error… More >

  • Open Access

    PROCEEDINGS

    High-Resolution Flow Field Reconstruction Based on Graph-Embedding Neural Network

    Weixin Jiang1,*, Zongze Li2, Qing Yuan3,*, Junhua Gong2, Bo Yu4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-3, 2024, DOI:10.32604/icces.2024.011266

    Abstract High resolution flow field results are of great significance for exploring physical laws and guiding practical engineering practice. However, traditional activities based on experiments or direct numerical solutions to obtain high-resolution flow fields typically require a significant amount of computational time or resources. In response to this challenge, this study proposes an efficient and robust high-resolution flow field reconstruction method by embedding graph theory into neural networks, to adapt to low data volume situations. In the high resolution flow field reconstruction problem of an NS equation, the proposed model has a lower mean squared error More >

  • Open Access

    PROCEEDINGS

    Physics-Informed Neural Network for Young-Laplace Equation

    Cunliang Pan1, Shi Feng2, Shengyang Tao2, Hongwu Zhang1, Yonggang Zheng1,3, Hongfei Ye1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011132

    Abstract Capillarity is prevalent in nature, daily life, and industrial processes, governed by the fundamental Young-Laplace equation. Solving this equation not only enhances our understanding of natural phenomena but also provides valuable insights into industrial advancements. To address challenges posed by conventional numerical methods in parameter identification and complex boundary condition handling, the Young-Laplace Physics-informed Neural Network (Y-L PINN) is introduced to solve the Young-Laplace equation within a tubular domain. Through computational analyses focusing on the classical capillary rise case, the proposed method's accuracy is affirmed through comparisons with Jurin's law, experimental data, and numerical results.… More >

  • Open Access

    ARTICLE

    Advanced BERT and CNN-Based Computational Model for Phishing Detection in Enterprise Systems

    Brij B. Gupta1,2,3,4,*, Akshat Gaurav5, Varsha Arya6,7, Razaz Waheeb Attar8, Shavi Bansal9, Ahmed Alhomoud10, Kwok Tai Chui11

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2165-2183, 2024, DOI:10.32604/cmes.2024.056473 - 31 October 2024

    Abstract Phishing attacks present a serious threat to enterprise systems, requiring advanced detection techniques to protect sensitive data. This study introduces a phishing email detection framework that combines Bidirectional Encoder Representations from Transformers (BERT) for feature extraction and CNN for classification, specifically designed for enterprise information systems. BERT’s linguistic capabilities are used to extract key features from email content, which are then processed by a convolutional neural network (CNN) model optimized for phishing detection. Achieving an accuracy of 97.5%, our proposed model demonstrates strong proficiency in identifying phishing emails. This approach represents a significant advancement in More >

  • Open Access

    ARTICLE

    Segmentation of Head and Neck Tumors Using Dual PET/CT Imaging: Comparative Analysis of 2D, 2.5D, and 3D Approaches Using UNet Transformer

    Mohammed A. Mahdi1, Shahanawaj Ahamad2, Sawsan A. Saad3, Alaa Dafhalla3, Alawi Alqushaibi4, Rizwan Qureshi5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2351-2373, 2024, DOI:10.32604/cmes.2024.055723 - 31 October 2024

    Abstract The segmentation of head and neck (H&N) tumors in dual Positron Emission Tomography/Computed Tomography (PET/CT) imaging is a critical task in medical imaging, providing essential information for diagnosis, treatment planning, and outcome prediction. Motivated by the need for more accurate and robust segmentation methods, this study addresses key research gaps in the application of deep learning techniques to multimodal medical images. Specifically, it investigates the limitations of existing 2D and 3D models in capturing complex tumor structures and proposes an innovative 2.5D UNet Transformer model as a solution. The primary research questions guiding this study… More >

  • Open Access

    ARTICLE

    Transient Thermal Distribution in a Wavy Fin Using Finite Difference Approximation Based Physics Informed Neural Network

    Sara Salem Alzaid1, Badr Saad T. Alkahtani1,*, Kumar Chandan2, Ravikumar Shashikala Varun Kumar3

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2555-2574, 2024, DOI:10.32604/cmes.2024.055312 - 31 October 2024

    Abstract Heat transport has been significantly enhanced by the widespread usage of extended surfaces in various engineering domains. Gas turbine blade cooling, refrigeration, and electronic equipment cooling are a few prevalent applications. Thus, the thermal analysis of extended surfaces has been the subject of a significant assessment by researchers. Motivated by this, the present study describes the unsteady thermal dispersal phenomena in a wavy fin with the presence of convection heat transmission. This analysis also emphasizes a novel mathematical model in accordance with transient thermal change in a wavy profiled fin resulting from convection using the… More >

  • Open Access

    ARTICLE

    A Genetic Algorithm-Based Optimized Transfer Learning Approach for Breast Cancer Diagnosis

    Hussain AlSalman1, Taha Alfakih2, Mabrook Al-Rakhami2, Mohammad Mehedi Hassan2,*, Amerah Alabrah2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2575-2608, 2024, DOI:10.32604/cmes.2024.055011 - 31 October 2024

    Abstract Breast cancer diagnosis through mammography is a pivotal application within medical image-based diagnostics, integral for early detection and effective treatment. While deep learning has significantly advanced the analysis of mammographic images, challenges such as low contrast, image noise, and the high dimensionality of features often degrade model performance. Addressing these challenges, our study introduces a novel method integrating Genetic Algorithms (GA) with pre-trained Convolutional Neural Network (CNN) models to enhance feature selection and classification accuracy. Our approach involves a systematic process: first, we employ widely-used CNN architectures (VGG16, VGG19, MobileNet, and DenseNet) to extract a… More >

  • Open Access

    ARTICLE

    Optimizing Bearing Fault Detection: CNN-LSTM with Attentive TabNet for Electric Motor Systems

    Alaa U. Khawaja1, Ahmad Shaf2,*, Faisal Al Thobiani3, Tariq Ali4, Muhammad Irfan5, Aqib Rehman Pirzada2, Unza Shahkeel2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2399-2420, 2024, DOI:10.32604/cmes.2024.054257 - 31 October 2024

    Abstract Electric motor-driven systems are core components across industries, yet they’re susceptible to bearing faults. Manual fault diagnosis poses safety risks and economic instability, necessitating an automated approach. This study proposes FTCNNLSTM (Fine-Tuned TabNet Convolutional Neural Network Long Short-Term Memory), an algorithm combining Convolutional Neural Networks, Long Short-Term Memory Networks, and Attentive Interpretable Tabular Learning. The model preprocesses the CWRU (Case Western Reserve University) bearing dataset using segmentation, normalization, feature scaling, and label encoding. Its architecture comprises multiple 1D Convolutional layers, batch normalization, max-pooling, and LSTM blocks with dropout, followed by batch normalization, dense layers, and More >

  • Open Access

    ARTICLE

    Predicting Grain Orientations of 316 Stainless Steel Using Convolutional Neural Networks

    Dhia K. Suker, Ahmed R. Abdo*, Khalid Abdulkhaliq M. Alharbi

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 929-947, 2024, DOI:10.32604/iasc.2024.056341 - 31 October 2024

    Abstract This paper presents a deep learning Convolutional Neural Network (CNN) for predicting grain orientations from electron backscatter diffraction (EBSD) patterns. The proposed model consists of multiple neural network layers and has been trained on a dataset of EBSD patterns obtained from stainless steel 316 (SS316). Grain orientation changes when considering the effects of temperature and strain rate on material deformation. The deep learning CNN predicts material orientation using the EBSD method to address this challenge. The accuracy of this approach is evaluated by comparing the predicted crystal orientation with the actual orientation under different conditions, More >

  • Open Access

    ARTICLE

    Multi-Lever Early Warning for Wind and Photovoltaic Power Ramp Events Based on Neural Network and Fuzzy Logic

    Huan Ma1, Linlin Ma2, Zengwei Wang3,*, Zhendong Li3, Yuanzhen Zhu1, Yutian Liu3

    Energy Engineering, Vol.121, No.11, pp. 3133-3160, 2024, DOI:10.32604/ee.2024.055051 - 21 October 2024

    Abstract With the increasing penetration of renewable energy in power system, renewable energy power ramp events (REPREs), dominated by wind power and photovoltaic power, pose significant threats to the secure and stable operation of power systems. This paper presents an early warning method for REPREs based on long short-term memory (LSTM) network and fuzzy logic. First, the warning levels of REPREs are defined by assessing the control costs of various power control measures. Then, the next 4-h power support capability of external grid is estimated by a tie line power prediction model, which is constructed based More > Graphic Abstract

    Multi-Lever Early Warning for Wind and Photovoltaic Power Ramp Events Based on Neural Network and Fuzzy Logic

Displaying 11-20 on page 2 of 1356. Per Page