Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,417)
  • Open Access

    ARTICLE

    A Modified Deep Residual-Convolutional Neural Network for Accurate Imputation of Missing Data

    Firdaus Firdaus, Siti Nurmaini*, Anggun Islami, Annisa Darmawahyuni, Ade Iriani Sapitri, Muhammad Naufal Rachmatullah, Bambang Tutuko, Akhiar Wista Arum, Muhammad Irfan Karim, Yultrien Yultrien, Ramadhana Noor Salassa Wandya

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3419-3441, 2025, DOI:10.32604/cmc.2024.055906 - 17 February 2025

    Abstract Handling missing data accurately is critical in clinical research, where data quality directly impacts decision-making and patient outcomes. While deep learning (DL) techniques for data imputation have gained attention, challenges remain, especially when dealing with diverse data types. In this study, we introduce a novel data imputation method based on a modified convolutional neural network, specifically, a Deep Residual-Convolutional Neural Network (DRes-CNN) architecture designed to handle missing values across various datasets. Our approach demonstrates substantial improvements over existing imputation techniques by leveraging residual connections and optimized convolutional layers to capture complex data patterns. We evaluated… More >

  • Open Access

    ARTICLE

    A Power Battery Fault Diagnosis Method Based on Long-Short Term Memory-Back Propagation

    Yuheng Yin, Jiahao Song*, Minghui Yang

    Energy Engineering, Vol.122, No.2, pp. 709-731, 2025, DOI:10.32604/ee.2024.059021 - 31 January 2025

    Abstract The lithium battery is an essential component of electric cars; prompt and accurate problem detection is vital in guaranteeing electric cars’ safe and dependable functioning and addressing the limitations of Back Propagation (BP) neural networks in terms of vanishing gradients and inability to effectively capture dependencies in time series, and the limitations of Long-Short Term Memory (LSTM) neural network models in terms of risk of overfitting. A method based on LSTM-BP is put forward for power battery fault diagnosis to improve the accuracy of lithium battery fault diagnosis. First, a lithium battery model is constructed… More > Graphic Abstract

    A Power Battery Fault Diagnosis Method Based on Long-Short Term Memory-Back Propagation

  • Open Access

    ARTICLE

    Predicting the Construction Quality of Projects by Using Hybrid Soft Computing Techniques

    Ching-Lung Fan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1995-2017, 2025, DOI:10.32604/cmes.2025.059414 - 27 January 2025

    Abstract The construction phase of a project is a critical factor that significantly impacts its overall success. The construction environment is characterized by uncertainty and dynamism, involving nonlinear relationships among various factors that affect construction quality. This study utilized 987 construction inspection records from 1993 to 2022, obtained from the Taiwanese Public Construction Management Information System (PCMIS), to determine the relationships between construction factors and quality. First, fuzzy logic was applied to calculate the weights of 499 defects, and 25 critical construction factors were selected based on these weight values. Next, a deep neural network was… More >

  • Open Access

    REVIEW

    Enhancing Evapotranspiration Estimation: A Bibliometric and Systematic Review of Hybrid Neural Networks in Water Resource Management

    Moein Tosan1, Mohammad Reza Gharib2,*, Nasrin Fathollahzadeh Attar3, Ali Maroosi4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1109-1154, 2025, DOI:10.32604/cmes.2025.058595 - 27 January 2025

    Abstract Accurate estimation of evapotranspiration (ET) is crucial for efficient water resource management, particularly in the face of climate change and increasing water scarcity. This study performs a bibliometric analysis of 352 articles and a systematic review of 35 peer-reviewed papers, selected according to PRISMA guidelines, to evaluate the performance of Hybrid Artificial Neural Networks (HANNs) in ET estimation. The findings demonstrate that HANNs, particularly those combining Multilayer Perceptrons (MLPs), Recurrent Neural Networks (RNNs), and Convolutional Neural Networks (CNNs), are highly effective in capturing the complex nonlinear relationships and temporal dependencies characteristic of hydrological processes. These… More >

  • Open Access

    REVIEW

    Deep Learning and Artificial Intelligence-Driven Advanced Methods for Acute Lymphoblastic Leukemia Identification and Classification: A Systematic Review

    Syed Ijaz Ur Rahman1, Naveed Abbas1, Sikandar Ali2, Muhammad Salman1, Ahmed Alkhayat3, Jawad Khan4,*, Dildar Hussain5, Yeong Hyeon Gu5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1199-1231, 2025, DOI:10.32604/cmes.2025.057462 - 27 January 2025

    Abstract Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system. Analysis of white blood cells (WBCs) in the blood or bone marrow microscopic slide images play a crucial part in early identification to facilitate medical experts. For Acute Lymphocytic Leukemia (ALL), the most preferred part of the blood or marrow is to be analyzed by the experts before it spreads in the whole body and the condition becomes worse. The researchers have done a lot of work in this field, to demonstrate… More >

  • Open Access

    ARTICLE

    Oversampling-Enhanced Feature Fusion-Based Hybrid ViT-1DCNN Model for Ransomware Cyber Attack Detection

    Muhammad Armghan Latif1, Zohaib Mushtaq2,*, Saifur Rahman3, Saad Arif4, Salim Nasar Faraj Mursal3, Muhammad Irfan3, Haris Aziz5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1667-1695, 2025, DOI:10.32604/cmes.2024.056850 - 27 January 2025

    Abstract Ransomware attacks pose a significant threat to critical infrastructures, demanding robust detection mechanisms. This study introduces a hybrid model that combines vision transformer (ViT) and one-dimensional convolutional neural network (1DCNN) architectures to enhance ransomware detection capabilities. Addressing common challenges in ransomware detection, particularly dataset class imbalance, the synthetic minority oversampling technique (SMOTE) is employed to generate synthetic samples for minority class, thereby improving detection accuracy. The integration of ViT and 1DCNN through feature fusion enables the model to capture both global contextual and local sequential features, resulting in comprehensive ransomware classification. Tested on the UNSW-NB15 More >

  • Open Access

    ARTICLE

    Deep Learning Empowered Diagnosis of Diabetic Retinopathy

    Mustafa Youldash1, Atta Rahman2,*, Manar Alsayed1, Abrar Sebiany1, Joury Alzayat1, Noor Aljishi1, Ghaida Alshammari1, Mona Alqahtani1

    Intelligent Automation & Soft Computing, Vol.40, pp. 125-143, 2025, DOI:10.32604/iasc.2025.058509 - 23 January 2025

    Abstract Diabetic retinopathy (DR) is a complication of diabetes that can lead to reduced vision or even blindness if left untreated. Therefore, early and accurate detection of this disease is crucial for diabetic patients to prevent vision loss. This study aims to develop a deep-learning approach for the early and precise diagnosis of DR, as manual detection can be time-consuming, costly, and prone to human error. The classification task is divided into two groups for binary classification: patients with DR (diagnoses 1–4) and those without DR (diagnosis 0). For multi-class classification, the categories are no DR,… More >

  • Open Access

    ARTICLE

    Data-Driven Method for Predicting Remaining Useful Life of Bearings Based on Multi-Layer Perception Neural Network and Bidirectional Long Short-Term Memory Network

    Yongfeng Tai1, Xingyu Yan2, Xiangyi Geng3, Lin Mu4, Mingshun Jiang2, Faye Zhang2,*

    Structural Durability & Health Monitoring, Vol.19, No.2, pp. 365-383, 2025, DOI:10.32604/sdhm.2024.053998 - 15 January 2025

    Abstract The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee. In engineering scenarios, only a small amount of bearing performance degradation data can be obtained through accelerated life testing. In the absence of lifetime data, the hidden long-term correlation between performance degradation data is challenging to mine effectively, which is the main factor that restricts the prediction precision and engineering application of the residual life prediction method. To address this problem, a novel method based on the multi-layer perception neural network and bidirectional long short-term memory network is proposed. Firstly,… More >

  • Open Access

    ARTICLE

    Steel Surface Defect Detection Using Learnable Memory Vision Transformer

    Syed Tasnimul Karim Ayon1,#, Farhan Md. Siraj1,#, Jia Uddin2,*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 499-520, 2025, DOI:10.32604/cmc.2025.058361 - 03 January 2025

    Abstract This study investigates the application of Learnable Memory Vision Transformers (LMViT) for detecting metal surface flaws, comparing their performance with traditional CNNs, specifically ResNet18 and ResNet50, as well as other transformer-based models including Token to Token ViT, ViT without memory, and Parallel ViT. Leveraging a widely-used steel surface defect dataset, the research applies data augmentation and t-distributed stochastic neighbor embedding (t-SNE) to enhance feature extraction and understanding. These techniques mitigated overfitting, stabilized training, and improved generalization capabilities. The LMViT model achieved a test accuracy of 97.22%, significantly outperforming ResNet18 (88.89%) and ResNet50 (88.90%), as well… More >

  • Open Access

    ARTICLE

    DIGNN-A: Real-Time Network Intrusion Detection with Integrated Neural Networks Based on Dynamic Graph

    Jizhao Liu, Minghao Guo*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 817-842, 2025, DOI:10.32604/cmc.2024.057660 - 03 January 2025

    Abstract The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats. Intrusion detection systems are crucial to network security, playing a pivotal role in safeguarding networks from potential threats. However, in the context of an evolving landscape of sophisticated and elusive attacks, existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts. To address these issues, this paper proposes a real-time network intrusion detection method based on… More >

Displaying 31-40 on page 4 of 1417. Per Page