Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (458)
  • Open Access

    ARTICLE

    Numerical Analysis of Dual Atomizing Nozzle Jets in a Waste Warehouse

    Yan Xiong1, Xiangnan Song1, Jiawei Lu1, Lei Liu2, Yaru Yan3, Xuemin Ye3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1063-1077, 2025, DOI:10.32604/fdmp.2025.063769 - 30 May 2025

    Abstract Enhancing the fermentation efficiency of waste in waste warehouses is pivotal for accelerating the pyrolysis process and minimizing harmful gas emissions. This study proposes an integrated approach, combining hot air injection with dual atomizing nozzles, for the thermal treatment of waste piles. Numerical simulations are employed to investigate the influence of various parameters, namely, nozzle height, nozzle tilt angle, inlet air velocity and air temperature, on the droplet diffusion process, spread area, droplet temperature, and droplet size distribution. The results show that reducing the nozzle height increases the temperature of droplets upon their deposition on… More > Graphic Abstract

    Numerical Analysis of Dual Atomizing Nozzle Jets in a Waste Warehouse

  • Open Access

    ARTICLE

    Rising Bubbles and Ensuing Wake Effects in Bottom-Blown Copper Smelters

    Zhi Yang1,2, Xiaohui Zhang1,2,*, Xinting Tong3, Yutang Zhao4, Teng Xia1,2, Hua Wang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1133-1150, 2025, DOI:10.32604/fdmp.2025.061737 - 30 May 2025

    Abstract In bottom-blown copper smelting processes, oxygen-enriched air is typically injected into the melt through a lance, generating bubbles that ascend and agitate the melt, enhancing mass, momentum, and heat transfer within the furnace. The melt’s viscosity, which varies across reaction stages, and the operating conditions influence bubble size and dynamics. This study investigates the interplay between melt viscosity and bubble diameter on bubble motion using numerical simulations and experiments. In particular, the volume of fluid (VOF) method and Ω-identification technique were employed to analyze bubble velocity, deformation, trajectories, and wake characteristics. The results showed that More >

  • Open Access

    ARTICLE

    4D Evolution of In-Situ Stress and Fracturing Timing Optimization in Shale Gas Wells

    Qi Deng1, Qi Ruan2, Bo Zeng1, Qiang Liu3, Yi Song1, Shen Cheng1, Huiying Tang2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1201-1219, 2025, DOI:10.32604/fdmp.2025.060311 - 30 May 2025

    Abstract Over more than a decade of development, medium to deep shale gas reservoirs have faced rapid production declines, making sustained output challenging. To harness remaining reserves effectively, advanced fracturing techniques such as infill drilling are essential. This study develops a complex fracture network model for dual horizontal wells and a four-dimensional in-situ stress evolution model, grounded in elastic porous media theory. These models simulate and analyze the evolution of formation pore pressure and in-situ stress during production. The investigation focuses on the influence of infill well fracturing timing on fracture propagation patterns, individual well productivity, and… More >

  • Open Access

    ARTICLE

    A Connectivity Model for the Numerical Simulation of Microgel Flooding in Low-Permeability Reservoirs

    Tao Wang1,2, Haiyang Yu1,*, Jie Gao2, Fei Wang2, Xinlong Zhang3,*, Hao Yang2, Guirong Di2, Pengrun Wang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1191-1200, 2025, DOI:10.32604/fdmp.2025.058865 - 30 May 2025

    Abstract Oilfields worldwide are increasingly grappling with challenges such as early water breakthrough and high water production, yet direct, targeted solutions remain elusive. In recent years, chemical flooding techniques designed for tertiary oil recovery have garnered significant attention, with microgel flooding emerging as a particularly prominent area of research. Despite its promise, the complex mechanisms underlying microgel flooding have been rarely investigated numerically. This study aims to address these gaps by characterizing the distribution of microgel concentration and viscosity within different pore structures. To enhance the accuracy of these characterizations, the viscosity of microgels is adjusted More >

  • Open Access

    ARTICLE

    Numerical Simulation on Depressurization-Driven Production of Class I Hydrate Deposits with Transition Layer and Perforation Modes Optimization

    Yajie Bai1,*, Jian Hou2,3, Yongge Liu2,3

    Energy Engineering, Vol.122, No.6, pp. 2503-2518, 2025, DOI:10.32604/ee.2025.063198 - 29 May 2025

    Abstract Natural gas hydrate widely exists in the South China Sea as clean energy. A three-phase transition layer widely exists in low permeability Class I hydrates in the Shenhu offshore area. Therefore, taking into account the low-permeability characteristics with an average permeability of 5.5 mD and moderate heterogeneity, a 3-D geological model of heterogeneous Class I hydrate reservoirs with three-phase transition layers is established by Kriging interpolation and stochastic modeling method, and a numerical simulation model is used to describe the depressurization production performance of the reservoir. With the development of depressurization, a specific range of… More >

  • Open Access

    ARTICLE

    The Influence of Water-Polymer Co-Flooding on the Development Effect of Oil Reservoirs

    Wensheng Zhou1,2, Chen Liu1,2, Deqiang Wang1,2, Bin Wang3, Yaguang Qu4,*

    Energy Engineering, Vol.122, No.6, pp. 2337-2354, 2025, DOI:10.32604/ee.2025.062530 - 29 May 2025

    Abstract The J oilfield in the Bohai has a long development history and has undergone comprehensive adjustment measures, including water injection and polymer injection. Following these adjustments, the injection and production well network now features coexistence of both polymer injection wells and water injection wells, which has negatively impacted production dynamics. Firstly, based on the adjusted reservoir well network in the J oilfield, a representative water-polymer co-injection well network was established. Subsequently, a numerical simulation model of this typical reservoir unit was developed using reservoir numerical simulation methods to confirm the interference issues associated with water-polymer More >

  • Open Access

    ARTICLE

    Experimental and Numerical Simulation Research on Aerodynamic Field of Integrated Exhaust End of Natural Gas Distributed Energy Station

    Shuang Li1, Suoying He2, Shen Cheng1,*, Jiarui Wu1, Ruiting Meng1

    Energy Engineering, Vol.122, No.6, pp. 2309-2335, 2025, DOI:10.32604/ee.2025.062216 - 29 May 2025

    Abstract In view of the situation of multi-temperature, multi-medium and multi-discharge equipment on the integrated exhaust end platform of a natural gas distributed energy station, which is compact in layout, mutual influence, complex aerodynamic field and complex heat and mass transfer field, the temperature field and aerodynamic field of the platform were comprehensively studied through field experiments and numerical simulation. The research results show that the high temperature flue gas discharged from the chimney is hindered by the chimney cap and returns downward. The noise reduction walls around the chimney make the top of the platform… More >

  • Open Access

    ARTICLE

    Characterization of Purged Gas-Liquid Two-Phase Flow in a Molten Salt Regulating Valve

    Shuxun Li1,2, Jianwei Wang1,2,*, Tingjin Ma1, Guolong Deng1,2, Wei Li1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.4, pp. 959-988, 2025, DOI:10.32604/fdmp.2025.059570 - 06 May 2025

    Abstract In photothermal power (solar energy) generation systems, purging residual molten salt from pipelines using high-pressure gas poses a significant challenge, particularly in clearing the bottom of regulating valves. Ineffective purging can lead to crystallization of the molten salt, resulting in blockages. To address this issue, understanding the gas-liquid two-phase flow dynamics during high-pressure gas purging is crucial. This study utilizes the Volume of Fluid (VOF) model and adaptive dynamic grids to simulate the gas-liquid two-phase flow during the purging process in a DN50 PN50 conventional molten salt regulating valve. Initially, the reliability of the… More >

  • Open Access

    ARTICLE

    Conjugate Usage of Experimental for and Theoretical Models Aqua Carboxymethyl Cellulose Nanofluid Flow in Convergent-Divergent Shaped Microchannel

    Shervin Fateh Khanshir1, Saeed Dinarvand2,*, Ramtin Fateh Khanshir3

    Frontiers in Heat and Mass Transfer, Vol.23, No.2, pp. 663-684, 2025, DOI:10.32604/fhmt.2025.060559 - 25 April 2025

    Abstract This article aims to model and analyze the heat and fluid flow characteristics of a carboxymethyl cellulose (CMC) nanofluid within a convergent-divergent shaped microchannel (Two-dimensional). The base fluid, water + CMC (0.5%), is mixed with CuO and Al2O3 nanoparticles at volume fractions of 0.5% and 1.5%, respectively. The research is conducted through the conjugate usage of experimental and theoretical models to represent more realistic properties of the non-Newtonian nanofluid. Three types of microchannels including straight, divergent, and convergent are considered, all having the same length and identical inlet cross-sectional area. Using ANSYS FLUENT software, Navier-Stokes equations… More > Graphic Abstract

    Conjugate Usage of Experimental for and Theoretical Models Aqua Carboxymethyl Cellulose Nanofluid Flow in Convergent-Divergent Shaped Microchannel

  • Open Access

    ARTICLE

    Energy-Efficient Air Conditioning System with Combined a Ceiling Fan for Thermal Comfort in an Office

    Linlan Chang1, Win-Jet Luo1,2, Indra Permana2, Bowo Yuli Prasetyo3, Alya Penta Agharid1, Fujen Wang2,*

    Energy Engineering, Vol.122, No.5, pp. 1771-1787, 2025, DOI:10.32604/ee.2025.062209 - 25 April 2025

    Abstract Heating, Ventilation, and Air Conditioning (HVAC) systems are critical for maintaining thermal comfort in office environments which also crucial for occupant well-being and productivity. This study investigates the impact of integrating ceiling fans with higher air conditioning setpoints on thermal comfort and energy efficiency in office environments. Field measurements and questionnaire surveys were conducted to evaluate thermal comfort and energy-saving potential under varying conditions. Results show that increasing the AC setpoint from 25°C to 27°C, combined with ceiling fan operation, reduced power consumption by 10%, achieving significant energy savings. Survey data confirmed that 85% of… More >

Displaying 1-10 on page 1 of 458. Per Page