Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (105)
  • Open Access

    ARTICLE

    Foam-Laid Thermoplastic Composites Based on Kraft Lignin and Softwood Pulp

    Antti Ojala1,*, Lisa Wikström1, Kalle Nättinen2, Jani Lehmonen3, Karita Kinnunen-Raudaskoski4

    Journal of Renewable Materials, Vol.2, No.4, pp. 278-284, 2014, DOI:10.7569/JRM.2014.634126

    Abstract This article presents a new method of producing thermomoldable nonwoven materials based on kraft lignin (KL) and softwood kraft pulp (KP). A mixture of starch acetate (SA) and triethyl citrate (TEC) was used as a water insoluble plasticizer for KL. The thermoplastic lignin (TPL) material with the optimized ratio of KL, SA and TEC was prepared in a twin-screw extruder. The TPL compound was ground and mixed with KP fi bers to produce thermoformable sheets using foam-laid technology. The formed webs were compression molded (CM) into plates and mechanically tested. The foam-laid composites had tensile More >

  • Open Access

    ARTICLE

    Change of Scale Strategy for the Microstructural Modelling of Polymeric Rohacell Foams

    J. Aubry1, P. Navarro1, S. Marguet1, J.-F. Ferrero1, O. Dorival2, L. Sohier3, J.-Y. Cognard3

    CMC-Computers, Materials & Continua, Vol.39, No.1, pp. 21-47, 2014, DOI:10.3970/cmc.2014.039.021

    Abstract In this paper a numerical model dedicated to the simulation of the mechanical behaviour of polymeric Rohacell foams is presented. The finite elements model is developed at the scale of the microstructure idealized by a representative unit cell: the truncated octahedron. Observations made on micrographs of Rohacell lead to mesh this representative unit cell as a lattice of beam elements. Each beam is assigned a brittle linear elastic mechanical behaviour in tension and an elastoplastic behaviour in compression. The plasticity in compression is introduced as a way to mimic the buckling of the edges of More >

  • Open Access

    ARTICLE

    Advances of Polyurethane Foams Derived from Lignin

    Hyoe Hatakeyama1,*, Tatsuko Hatakeyama2

    Journal of Renewable Materials, Vol.1, No.2, pp. 113-123, 2013, DOI:10.7569/JRM.2012.634111

    Abstract Lignin and saccharides are two major components of plants. Huge amounts of plant residues are obtained as by-products of large-scale industries, such as pulp and paper, bio-fuel and the food industry. In this paper, preparation of polyurethane (PU) foam directly from various kinds of industrial lignin and molasses, which have scarcely been utilized, is summarized based on our results obtained by recent investigation. A onestep reaction using hydroxyl groups of plant materials as an active site makes it possible to produce a wide variety of PU, such as foams, sheets, gels and composite matrix. In More >

  • Open Access

    ARTICLE

    Dynamic Foaming Behaviour of Polyurethane vs Tannin/ Furanic Foams

    M.C. Basso1,2, A. Pizzi1,3,*, A. Celzard4

    Journal of Renewable Materials, Vol.1, No.4, pp. 273-278, 2013, DOI:10.7569/JRM.2013.634125

    Abstract : Simultaneously monitoring the variation of temperature, foam rising rate, internal foam pressure and dielectric polarisation, the latter being a direct measure of setting and curing of a thermosetting foam, has allowed the comparison of the dynamic variation of determinant parameters of polyurethane foams and of tannin/furanic foams of different formulation and characteristics. This monitoring provides a good description of the process and possible characteristics of the prepared foam and constitutes an invaluable tool for foam formulation. Such a comparison indicates that fundamental differences, but also similarities, exist between the foaming processes of the two More >

  • Open Access

    ARTICLE

    An Investigation on Dynamic Properties of Aluminium Alloy Foam Using Modified Large Scale SHPB Based on Dispersion Correction

    H.H. Luo1, Z.H. Tan1,2, X. Han1, C. Chen1

    CMC-Computers, Materials & Continua, Vol.32, No.1, pp. 1-14, 2012, DOI:10.3970/cmc.2012.032.001

    Abstract The dynamic properties of aluminium alloy foam were investigated by using split Hopkinson pressure bar (SHPB) with diameter of 40 mm. The aluminium alloy pressure bar and pulse shape technique were used to modify the traditional SHPB due to the low impedance of aluminium alloy foam. Wave dispersion correction on the aluminium alloy pressure bar was studied by Fourier series. And the finite element numerical simulation was also performed to demonstrate and validate the dispersion correction results by Fourier series method. The reflected and transmitted wave measured in SHPB experiments were corrected by the backward More >

  • Open Access

    ARTICLE

    On the Compression Viewed as a Geometric Transformation

    Ligia Munteanu1, Cornel Brisan2, Veturia Chiroiu3, Stefania Donescu4

    CMC-Computers, Materials & Continua, Vol.31, No.2, pp. 127-146, 2012, DOI:10.3970/cmc.2012.031.127

    Abstract A modeling of the compression by using the property of Helmholtz equation to be invariant under geometric transformations is presented in this paper. The versatility of the geometric transformations is illustrated in order to obtain a new interpretation of the compression process. The physical spatial compression leads, most of the times, to new materials with inhomogeneous and anisotropic properties. The compression can be theoretically controlled by the geometric transformations. As an example, new architectures for auxetic materials can be built up by applying the geometric transformations. The new versions are finding their full correspondents in More >

  • Open Access

    ARTICLE

    FEM Modeling of the Interface Strength and Its Effect on the Deformation Behaviour of Aluminum Cenosphere Syntactic Foam

    Raghvendra Khedle1, D.P.Mondal2, S.N.Verma1, Sanjay Panthi2

    CMC-Computers, Materials & Continua, Vol.27, No.3, pp. 211-230, 2012, DOI:10.3970/cmc.2011.027.211

    Abstract The interface in aluminum cenosphere syntactic foam (ACSF) is modeled using FEM to study its deformation behaviour as a function of interface characteristics such as interface stiffness and thickness. The interface is modeled as a thin layer of object. The effective modulus and stress of ACSF examined when it contain 50% cenosphere by volume. In this study, the shell wall thickness of cenosphere is fixed at 1µm. The width of the interface varies from 0.2% to 0.6% of cenosphere volume fraction. The interface strength and modulus varies in the range of 10 to 50% of the More >

  • Open Access

    ARTICLE

    Simulation of the Deformation Mechanisms of Bulk Metallic Glass (BMG) Foam using the Material Point Method

    Jin Ma1, Jay C. Hanan1, Ranga Komanduri1, Hongbing Lu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.4, pp. 349-384, 2012, DOI:10.3970/cmes.2012.086.349

    Abstract Amorphous metallic foams are an exciting class of materials for an array of high impact absorption applications, the mechanical behavior of which is only beginning to be characterized. To determine mechanical properties, guide processing, and engineer the microstructure for impact absorption, simulation of the mechanical properties is necessary as experimental determination alone can be expensive and time consuming. In this investigation, the material point method (MPM) with C1 continuous shape function is used to simulate the response of a bulk metallic glass (BMG) closed-cell foam (Pd42.5Cu30Ni7.5P20) under compression. The BMG foam was also tested experimentally… More >

  • Open Access

    ARTICLE

    Numerical Investigation on Dynamical Response of Aluminum Foam Subject to Hypervelocity Impact With Material Point Method

    Weiwei Gong, Yan Liu, Xiong Zhang, Honglei Ma

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.5, pp. 527-546, 2012, DOI:10.3970/cmes.2012.083.527

    Abstract Owing to its low density and good energy absorption capability, aluminum foam is an excellent protective material for spacecraft against debris impact. However, because of its complicated microstructure, it is very difficult to generate a FEM mesh accounting for the real microstructure of the alluminum foam. On the contrary, it is very easy to model three-dimensional problems with very complicated geometry with meshfree/meshless methods. Furthermore, the material point method has obvious advantages in modeling problems involving extreme large deformation problems like hypervelocity impact problem. In this paper, a three-dimensional material point model accounting for the More >

  • Open Access

    ABSTRACT

    Size-dependent elastic properties of micro- and nano-open-celled foams

    Hanxing Zhu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.17, No.4, pp. 131-132, 2011, DOI:10.3970/icces.2011.017.131

    Abstract This paper aims to study the size-dependent elastic properties of micro- and nano-sized open-celled foams. To simplify the analysis, we use perfect regular body-centered cubic structure (i.e. BCC foam), which has cubic symmetry and only three independent elastic constants. Taking strut bending, twisting and axial compression/stretching as the deformation mechanisms, Zhu, Knott and Mills (JMPS, V45, pp. 319-343, 1997) have obtained closed form results of all the three independent elastic constants (i.e. the Young's modulus E11 , the shear modulus G12 and the Poisson ratio v12 ) as functions of the bending stiffness, the torsional… More >

Displaying 91-100 on page 10 of 105. Per Page