Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (106)
  • Open Access

    ARTICLE

    Enhancing Roaming Security in Cloud-Native 5G Core Network through Deep Learning-Based Intrusion Detection System

    I Wayan Adi Juliawan Pawana1,2, Vincent Abella2, Jhury Kevin Lastre2, Yongho Ko2, Ilsun You2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2733-2760, 2025, DOI:10.32604/cmes.2025.072611 - 26 November 2025

    Abstract Roaming in 5G networks enables seamless global mobility but also introduces significant security risks due to legacy protocol dependencies, uneven Security Edge Protection Proxy (SEPP) deployment, and the dynamic nature of inter-Public Land Mobile Network (inter-PLMN) signaling. Traditional rule-based defenses are inadequate for protecting cloud-native 5G core networks, particularly as roaming expands into enterprise and Internet of Things (IoT) domains. This work addresses these challenges by designing a scalable 5G Standalone testbed, generating the first intrusion detection dataset specifically tailored to roaming threats, and proposing a deep learning based intrusion detection framework for cloud-native environments.… More > Graphic Abstract

    Enhancing Roaming Security in Cloud-Native 5G Core Network through Deep Learning-Based Intrusion Detection System

  • Open Access

    ARTICLE

    A Novel Low-Damage Viscoelastic-Surfactant Foam Fracturing Fluid for Tight Reservoirs: Development and Performance Assessment

    Yu Li1,2,3,*, Jie Bian3, Liang Zhang2,3, Xuesong Feng3, Jiachen Hu3, Ji Yu3, Chao Zhou3, Tian Lan3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.10, pp. 2539-2556, 2025, DOI:10.32604/fdmp.2025.067685 - 30 October 2025

    Abstract As oil and gas development increasingly targets unconventional reservoirs, the limitations of conventional hydraulic fracturing, namely high water consumption and significant reservoir damage, have become more pronounced. This has driven growing interest in the development of clean fracturing fluids that minimize both water usage and formation impairment. In this study, a low-liquid-content viscoelastic surfactant (VES) foam fracturing fluid system was formulated and evaluated through laboratory experiments. The optimized formulation comprises 0.2% foaming agent CTAB (cetyltrimethylammonium bromide) and 2% foam stabilizer EAPB (erucamidopropyl betaine). Laboratory tests demonstrated that the VES foam system achieved a composite foam… More >

  • Open Access

    ARTICLE

    Prediction and Sensitivity Analysis of Foam Concrete Compressive Strength Based on Machine Learning Techniques with Hyperparameter Optimization

    Sen Yang1, Jie Zhong1, Boyu Gan1, Yi Sun1, Changming Bu1, Mingtao Zhang1, Jiehong Li1,*, Yang Yu1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2943-2967, 2025, DOI:10.32604/cmes.2025.067282 - 30 September 2025

    Abstract Foam concrete is widely used in engineering due to its lightweight and high porosity. Its compressive strength, a key performance indicator, is influenced by multiple factors, showing nonlinear variation. As compressive strength tests for foam concrete take a long time, a fast and accurate prediction method is needed. In recent years, machine learning has become a powerful tool for predicting the compressive strength of cement-based materials. However, existing studies often use a limited number of input parameters, and the prediction accuracy of machine learning models under the influence of multiple parameters and nonlinearity remains unclear.… More >

  • Open Access

    ARTICLE

    Performance Analysis of Foamed Fracturing Fluids Based on Microbial Polysaccharides and Surfactants in High-Temperature and High-Salinity Reservoirs

    Zhiqiang Jiang1, Zili Li1, Bin Liang2, Miao He1, Weishou Hu3, Jun Tang3, Chao Song4, Nanxin Zheng5,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.6, pp. 1397-1416, 2025, DOI:10.32604/fdmp.2025.062737 - 30 June 2025

    Abstract Microbial polysaccharides, due to their unique physicochemical properties, have been shown to effectively enhance the stability of foam fracturing fluids. However, the combined application of microbial polysaccharides and surfactants under high-temperature and high-salinity conditions remain poorly understood. In this study, we innovatively investigate this problem with a particular focus on foam stabilization mechanisms. By employing the Waring blender method, the optimal surfactant-microbial polysaccharide blends are identified, and the foam stability, rheological properties, and decay behavior in different systems under varying conditions are systematically analyzed for the first time. The results reveal that microbial polysaccharides significantly More >

  • Open Access

    ARTICLE

    New Rigid Furan Biofoams Based on Hydrolysable Chesnut (Castanea sativa) Tannin by Chemical Expansion

    João Vitor Dorini Falavinha1, Pedro Henrique Gonzales De Cademartori2, Philippe Gérardin1, Antonio Pizzi1, Christine Gérardin-Charbonnier1,*

    Journal of Renewable Materials, Vol.13, No.4, pp. 687-697, 2025, DOI:10.32604/jrm.2025.058902 - 21 April 2025

    Abstract Tannins are polyphenols widely present in the plant kingdom, commonly divided into two groups: condensed and hydrolysable tannins. Sustainable furanic bio-foams based on condensed tannins have been largely studied, but little is described about the use of hydrolysable tannins for this material. This study examined the potential of hydrolysable chestnut tannin in comparison to condensed mimosa tannins to produce furanic foams by chemical expansion. Due to the low reactivity of the hydrolysable tannin, the use of an external source for its polymerization and curing was necessary. Through Fourier transform infrared spectroscopy (FTIR) chromatography, it was More > Graphic Abstract

    New Rigid Furan Biofoams Based on Hydrolysable Chesnut (<i>Castanea sativa</i>) Tannin by Chemical Expansion

  • Open Access

    ARTICLE

    Green Natural Rubber Foam and Enhanced Physical Properties from Sugarcane Bagasse Ash

    Pattaranun Thuadaij, Bualoy Chanpaka*

    Journal of Renewable Materials, Vol.13, No.4, pp. 753-772, 2025, DOI:10.32604/jrm.2025.057590 - 21 April 2025

    Abstract Natural rubber (NR) foams are widely used. However, further studies are required for preparing eco-friendly NR foam and determining the optimum physical properties appropriate for application. This study aims to create an NR foam from rubber reinforced with sugarcane bagasse ash (SCBA) and sodium alginate. The results showed that the SCBA was primarily composed of silica or silicon dioxide (87.52% by weight) and carbon (11.41% by weight). This study investigated the influence of the amount of sodium alginate (0–5 phr) used in the NR foam formation. The addition of SCBA on the NR foam affected More > Graphic Abstract

    Green Natural Rubber Foam and Enhanced Physical Properties from Sugarcane Bagasse Ash

  • Open Access

    ARTICLE

    Study on the Improvement of Foaming Properties of PBAT/PLA Composites by the Collaboration of Nano-Fe3O4 Carbon Nanotubes

    Jiahao Liu1,#, Xinyu Zhang1,#, Huiwei Wang1, Yupeng Li1, Shan Jin1, Guanxian Qiu1, Ce Sun1,2,*, Haiyan Tan1, Yanhua Zhang1,2,*

    Journal of Renewable Materials, Vol.13, No.4, pp. 669-685, 2025, DOI:10.32604/jrm.2025.02025-0042 - 21 April 2025

    Abstract In recent years, degradable materials to replace petroleum-based materials in preparing high-performance foams have received much research attention. Degradable polymer foaming mostly uses supercritical fluids, especially carbon dioxide (Sc-CO2). The main reason is that the foams obtained by Sc-CO2 foaming have excellent performance, and the foaming agent is green and pollution-free. In current research, Poly (butylene adipate-co-terephthalate) (PBAT), poly (lactic acid) (PLA), and other degradable polymers are generally used as the main foaming materials, but the foaming performance of these degradable polyesters is poor and requires modification. In this work, 10% PLA was added to PBAT to… More > Graphic Abstract

    Study on the Improvement of Foaming Properties of PBAT/PLA Composites by the Collaboration of Nano-Fe<sub><b>3</b></sub>O<sub><b>4</b></sub> Carbon Nanotubes

  • Open Access

    ARTICLE

    Environmentally Friendly Tannic Acid-Furfuryl Alcohol-Soybean Isolate/Casein Composite Foams Reinforced with Wood Fibers

    Jinxing Li1, Mustafa Zor2, Xiaojian Zhou3, Guanben Du3, Denis Rodrigue4, Xiaodong (Alice) Wang1,*

    Journal of Renewable Materials, Vol.13, No.2, pp. 329-347, 2025, DOI:10.32604/jrm.2024.056795 - 20 February 2025

    Abstract In this study, two series of foams based on tannic acid (TA), furfuryl alcohol (FA), soybean protein isolate (SPI), and casein (CA), namely TA–FA–SPI (TS series) and TA–FA–CA (TC series) were developed, and their properties were enhanced by adding poplar fibers (WF). From the samples produced, a complete set of characterization was performed including possible crosslinking reactions, morphology, mechanical properties, flame retardancy, thermal insulation and thermal stability. Fourier-transform infrared spectroscopy (FTIR) revealed possible covalent crosslinking among the components and hydrogen bonding between WF and the matrix. Viscosity results indicated that lower prepolymer viscosity led to… More >

  • Open Access

    ARTICLE

    Pushing the Boundaries of Starch Foams: Novel Laminar Composites with Paper Reinforcement

    Manisara Phiriyawirut*, Pukrapee Rodprasert, Peerapat Kulvorakulpitak, Ratiwan Cothsila, Nattarat Kengkla

    Journal of Renewable Materials, Vol.13, No.1, pp. 101-114, 2025, DOI:10.32604/jrm.2024.056830 - 20 January 2025

    Abstract This work explores the development of biodegradable laminar composite foams for cushioning applications. The focus lies on overcoming the inherent brittleness of starch foams by incorporating various paper types as reinforcement. Tapioca starch and glutinous starch were blended in varying ratios (100:0–0:100) to optimize the base material’s properties. The morphology, density, flexural strength, and impact strength of these starch blends were evaluated. The results revealed a trade-off between impact strength and density, with increasing glutinous starch content favoring impact resistance but also leading to higher density. The optimal ratio of tapioca to glutinous starch for… More > Graphic Abstract

    Pushing the Boundaries of Starch Foams: Novel Laminar Composites with Paper Reinforcement

  • Open Access

    ARTICLE

    Characterization and Performance Evaluation of Mycelium-Based Biofoams for Cushioning Materials Using Edible Mushrooms

    Tanyawan Suwandecha1, Supachai Pisuchpen2,*

    Journal of Renewable Materials, Vol.12, No.11, pp. 1811-1836, 2024, DOI:10.32604/jrm.2024.056334 - 22 November 2024

    Abstract This study investigated the development of mycelium-based biofoams as sustainable cushioning materials using Pleurotus ostreatus and Lentinus squarrosulus, combined with different sawdust substrates, and subjected to various pressing methods. The results indicated significant effects of mushroom species, sawdust type, and pressing method on the properties of biofoams. Growth rate, morphology, chemical composition, physical and mechanical properties, water resistance, and cushioning factor were evaluated. The results indicated that Lentinus squarrosulus (LS) exhibited faster growth rates (up to 14.37 mm/day) and produced biofoams with superior properties compared to Pleurotus ostreatus (PO). Core wood (CW) sawdust generally resulted in biofoams with lower… More > Graphic Abstract

    Characterization and Performance Evaluation of Mycelium-Based Biofoams for Cushioning Materials Using Edible Mushrooms

Displaying 1-10 on page 1 of 106. Per Page