Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (859)
  • Open Access

    ARTICLE

    Performance Analysis of Natural Gas Polyethylene Pipes Based on the Arrhenius Equation

    Li Niu1, Yang Wang1,*, Nan Lin2, Yaoying Yue1, Wenbin Fu1, Elzat Tuhanjiang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.6, pp. 1473-1487, 2025, DOI:10.32604/fdmp.2025.062623 - 30 June 2025

    Abstract With the widespread use of polyethylene (PE) materials in gas pipelines, the problem related to the aging of these pipes has attracted increasing attention. Especially under complex environmental conditions involving temperature, humidity, and pressure changes, PE pipes are prone to oxidative degradation, which adversely affects their performance and service life. This study investigates the aging behavior of PE pipes used for gas transport under the combined effects of temperature (ranging from 80°C to 110°C) and pressure (0, 0.1, 0.2, and 0.3 MPa). By assessing the characteristics and thermal stability of the aged pipes, relevant efforts… More >

  • Open Access

    ARTICLE

    Performance of an Electro-Optic-Liquid Coupling Nozzle with a Multi-Jet Focusing Structure

    Xiaozong Song*, Jiangbin Liu, Longhua Fei, Wencong Zhang

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.6, pp. 1379-1396, 2025, DOI:10.32604/fdmp.2025.061222 - 30 June 2025

    Abstract Ultra-precision components have been widely used to produce advanced optoelectronic equipment. The so-called Electric field enhanced UltraViolet-Induced Jet Machining (EUV-INCJM) is an ultra-precision method that can achieve sub-nanometer level surface quality polishing. This study focuses on the application of the EUV-INCJM with different nozzle structures to a single-crystal of silicon. Two kinds of electro-optic-liquid coupling nozzles with single-jet and multi-jet focusing structures are proposed accordingly. Simulations and experiments have been conducted to verify the material removal performance of these nozzles. The simulation results show that, under the same condition, the flow velocity of the single-jet… More >

  • Open Access

    ARTICLE

    Effect of Trapezoidal Obstacle Height and Arrangement Density on the Performance Enhancement of Tri-Serpentine PEMFCs

    Hongen Li, Hongjuan Ren*, Cong Li, Yecui Yan

    Frontiers in Heat and Mass Transfer, Vol.23, No.3, pp. 921-941, 2025, DOI:10.32604/fhmt.2025.066512 - 30 June 2025

    Abstract The flow field architecture of the proton exchange membrane fuel cell (PEMFC) cathode critically determines its performance. To enhance PEMFC operation through structural optimization, trapezoidal obstacles were implemented in the cathode flow channels. The height dependence of these obstacles was systematically investigated, revealing that a 0.7 mm obstacle height enhanced mass transfer from channels to the gas diffusion layer (GDL) compared to conventional triple-serpentine designs. This configuration achieved a 12.08% increase in limiting current density alongside improved water management. Subsequent studies on obstacle distribution density identified 75% density as optimal, delivering maximum net power density More >

  • Open Access

    ARTICLE

    Numerical Simulation on Heat Dissipation Characteristics of Electronic Components with Different Heat Sink Arrangements in High-Performance Server

    Zerui Chen*, Xin Wu, Houpeng Hu, Yang Zhou, Shang Yang

    Frontiers in Heat and Mass Transfer, Vol.23, No.3, pp. 991-1011, 2025, DOI:10.32604/fhmt.2025.065936 - 30 June 2025

    Abstract As the integration of electronic components in high-performance servers increases, heat generation significantly impacts performance and raises failure rates. Therefore, heat dissipation has become a critical concern in electronic circuit design. This study uses numerical simulations to investigate the heat dissipation characteristics of electronic components in air-cooled servers. By adjusting airflow speed, heat sink configurations, and the arrangement of straight-fin heat sinks, we optimize heat dissipation performance and analyze the mechanisms at different airflow speeds. The results show that, at the same airflow speed, the temperature of the heat sink is lower than that of… More >

  • Open Access

    ARTICLE

    Enhancing Hydrothermal Performance of Dimpled Tubes: Investigating the Impact of Different Dimple Sizes and Distribution along the Tube

    Basima Salman Khalaf*, Abeer H. Falih, Basim Freegah

    Frontiers in Heat and Mass Transfer, Vol.23, No.3, pp. 943-956, 2025, DOI:10.32604/fhmt.2025.065366 - 30 June 2025

    Abstract The main purpose of this research is to optimize the hydrothermal performance of a dimpled tube by augmenting the surface area for heat transmission and thermal layer cracking. To achieve that, the impact of different dimple diameters and their distribution along the dimpled tube was investigated numerically using the ANSYS Fluent 2022 R1 software by considering two models, A and B. Both models consist of three regions; the first, second, and third have dimple diameters of 3, 2, & 1 mm, respectively. Model A included an in-line dimple arrangement, while model B involved a staggered… More >

  • Open Access

    ARTICLE

    Performance Optimization of a U-Shaped Liquid Cooling Plate: A Synergistic Study of Flow Guide Plate and Spoiler Columns

    Jing Hu*, Xiaoyu Zhang

    Frontiers in Heat and Mass Transfer, Vol.23, No.3, pp. 957-974, 2025, DOI:10.32604/fhmt.2025.064892 - 30 June 2025

    Abstract As a core power device in strategic industries such as new energy power generation and electric vehicles, the thermal reliability of IGBT modules directly determines the performance and lifetime of the whole system. A synergistic optimization structure of “inlet plate-channel spoiler columns” is proposed for the local hot spot problem during the operation of Insulated Gate Bipolar Transistor (IGBT), combined with the inherent defect of uneven flow distribution of the traditional U-type liquid cooling plate in this paper. The influences of the shape, height (H), and spacing from the spoiler column (b) of the plate on… More > Graphic Abstract

    Performance Optimization of a U-Shaped Liquid Cooling Plate: A Synergistic Study of Flow Guide Plate and Spoiler Columns

  • Open Access

    ARTICLE

    Thermal Performance Analysis of Shell and Tube Heat Exchanger Using Hybrid Nanofluids Based on Al2O3, TiO2, and ZnO Nanoparticles

    Ans Ahmed Memon1, Laveet Kumar1,2,*, Abdul Ghafoor Memon1, Khanji Harijan1, Ahmad K. Sleiti2

    Frontiers in Heat and Mass Transfer, Vol.23, No.3, pp. 833-856, 2025, DOI:10.32604/fhmt.2025.064805 - 30 June 2025

    Abstract Climate change, rising fuel prices, and fuel security are some challenges that have emerged and have grown worldwide. Therefore, to overcome these obstacles, highly efficient thermodynamic devices and heat recovery systems must be introduced. According to reports, much industrial waste heat is lost as flue gas from boilers, heating plants, etc. The primary objective of this study is to investigate and compare unary (Al2O3) thermodynamically, binary with three different combinations of nanoparticles namely (Al2O3 + TiO2, TiO2 + ZnO, Al2O3 + ZnO) and ternary (Al2O3 + TiO2 + ZnO) as a heat transfer fluid. Initially, three different types of… More > Graphic Abstract

    Thermal Performance Analysis of Shell and Tube Heat Exchanger Using Hybrid Nanofluids Based on Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, and ZnO Nanoparticles

  • Open Access

    ARTICLE

    Design and Optimization of Converging-Diverging Liquid Cooling Channels for Enhanced Thermal Management in Lithium-ion Battery Packs

    Tianjiao Zhang*, Yibo Xu, Long Li, Kequn Li, Hua Zhang

    Frontiers in Heat and Mass Transfer, Vol.23, No.3, pp. 819-832, 2025, DOI:10.32604/fhmt.2025.064287 - 30 June 2025

    Abstract Power batteries serve as key components of new energy vehicles and are distinguished by their large capacity, long lifespan, high energy density, and stable operation. The strict temperature demands of power battery packs necessitate the development of highly efficient thermal management systems. In this study, a converging-diverging liquid cooling channel featuring a wave shaped structure was designed and analyzed for 18,650-type lithium-ion batteries. To investigate the design methodology for flow channel structure, a thermal model for the heat generation rate of the 18,650-type battery was developed. A comparative analysis of four geometrical configurations of converging-diverging… More >

  • Open Access

    ARTICLE

    Comparative Study on the Performance of a Solar Air Heater Using Aluminum Soda Cans with “Different Arrangements”

    Mohammed Salam Abdl Ghafoor, Mohammed K. Al-Saadi, Ameer Abed Jaddoa*

    Frontiers in Heat and Mass Transfer, Vol.23, No.3, pp. 975-990, 2025, DOI:10.32604/fhmt.2025.064025 - 30 June 2025

    Abstract The comparison of experimental performance was studied for soda cans: longitudinal, transverse, diagonal, and smooth cases to improve the heat transfer rate and thermal performance of the solar air heater, in this study using a frame which has 1.5 m × 0.5 m × 0.05 m dimensions, the arrangements were placed on the absorber plate inside the channel, raising the air’s exit temperature as it passed by. The work was carried out for 4 cases in January in Baghdad, Iraq, under specific conditions to compare them to reach the ideal case and the best performance… More >

  • Open Access

    REVIEW

    A Parametrical Comprehensive Review of Solar Assisted Humidification-Dehumidification Desalination Units

    Zahrah F. Hussein1,2,*, Abas Ramiar1, Karima E. Amori3

    Frontiers in Heat and Mass Transfer, Vol.23, No.3, pp. 765-817, 2025, DOI:10.32604/fhmt.2025.059507 - 30 June 2025

    Abstract The deficiency of potable water resources and energy supply is emerging as a significant and concerning obstacle to sustainable development. Solar and waste heat-powered humidification dehumidification (HDH) desalination systems become essential due to the severe impacts of global warming and water shortages. This problem highlights the need to apply boosted water desalination solutions. Desalination is a capital-intensive process that demands considerable energy, predominantly sourced from fossil fuels worldwide, posing a significant carbon footprint risk. HDH is a very efficient desalination method suitable for remote areas with moderate freshwater requirements for domestic and agricultural usage. Several… More >

Displaying 11-20 on page 2 of 859. Per Page