Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (82)
  • Open Access

    ARTICLE

    A Non-Intrusive Spiral Coil Heat Exchanger for Waste Heat Recovery from HVAC Units: Experimental and Thermal Performance Analysis

    S. Srinivasa senthil, K. Vijayakumar*

    Energy Engineering, Vol.122, No.12, pp. 5149-5173, 2025, DOI:10.32604/ee.2025.070889 - 27 November 2025

    Abstract Heating, ventilation, and air conditioning (HVAC) systems contribute substantially to global energy consumption, while rejecting significant amounts of low-grade heat into the environment. This paper presents a non-intrusive spiral-coil heat exchanger designed to recover waste heat from the outdoor condenser of a split-type air conditioner. The system operates externally without altering the existing HVAC configuration, thereby rendering it suitable for retrofitting. Water was circulated as the working fluid at flow rates of 0.028–0.052 kg/s to assess thermal performance. Performance indicators, including the outlet water temperature, heat transfer rate, convective coefficient, and efficiency, were systematically evaluated.… More >

  • Open Access

    ARTICLE

    Cavitation Performance Analysis of Tip Clearance in a Bulb-Type Hydro Turbine

    Feng Zhou1,2, Qifei Li1,*, Lu Xin1, Shiang Zhang3, Yang Liu1, Ming Guo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 411-429, 2025, DOI:10.32604/cmes.2025.069639 - 30 October 2025

    Abstract Bulb-type hydro turbines are commonly used in small- to medium-scale hydropower stations due to their compact design and adaptability to low-head conditions. However, long-term operation often results in wear at the runner rim, increasing tip clearance and triggering leakage flow and cavitation. These effects reduce hydraulic efficiency and accelerate blade surface erosion, posing serious risks to unit safety and operational stability. This study investigates the influence of tip clearance on cavitation performance in a 24 MW prototype bulb turbine. A three-dimensional numerical model is developed to simulate various operating conditions with different tip clearance values… More >

  • Open Access

    ARTICLE

    Analysis and Prediction of Real-Time Memory and Processor Usage Using Artificial Intelligence (AI)

    Kadriye Simsek Alan*, Ayca Durgut, Helin Doga Demirel

    Journal on Artificial Intelligence, Vol.7, pp. 397-415, 2025, DOI:10.32604/jai.2025.071133 - 20 October 2025

    Abstract Efficient utilization of processor and memory resources is essential for sustaining performance and energy efficiency in modern computing infrastructures. While earlier research has emphasized CPU utilization forecasting, joint prediction of CPU and memory usage under real workload conditions remains underexplored. This study introduces a machine learning–based framework for real-time prediction of CPU and RAM utilization using the Google Cluster Trace 2019 v3 dataset. The framework combines Extreme Gradient Boosting (XGBoost) with a MultiOutputRegressor (MOR) to capture nonlinear interactions across multiple resource dimensions, supported by a leakage-safe imputation strategy that prevents bias from missing values. Nested… More >

  • Open Access

    REVIEW

    A Systematic Review of YOLO-Based Object Detection in Medical Imaging: Advances, Challenges, and Future Directions

    Zhenhui Cai, Kaiqing Zhou*, Zhouhua Liao

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2255-2303, 2025, DOI:10.32604/cmc.2025.067994 - 23 September 2025

    Abstract The YOLO (You Only Look Once) series, a leading single-stage object detection framework, has gained significant prominence in medical-image analysis due to its real-time efficiency and robust performance. Recent iterations of YOLO have further enhanced its accuracy and reliability in critical clinical tasks such as tumor detection, lesion segmentation, and microscopic image analysis, thereby accelerating the development of clinical decision support systems. This paper systematically reviews advances in YOLO-based medical object detection from 2018 to 2024. It compares YOLO’s performance with other models (e.g., Faster R-CNN, RetinaNet) in medical contexts, summarizes standard evaluation metrics (e.g.,… More >

  • Open Access

    ARTICLE

    Performance Analysis of sCO2 Centrifugal Compressor under Variable Operating Conditions

    Jiangbo Wu1, Siyi Sun1, Xiaoze Du1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1789-1807, 2025, DOI:10.32604/fdmp.2025.064254 - 12 September 2025

    Abstract This study explores the aerodynamic performance and flow field characteristics of supercritical carbon dioxide (sCO2) centrifugal compressors under varying operating conditions. In particular, the Sandia main compressor impeller model is used as a reference system. Through three-dimensional numerical simulations, we examine the Mach number distribution, temperature field, blade pressure pulsation spectra, and velocity field evolution, and identify accordingly the operating boundaries ensuring stability and the mechanisms responsible for performance degradation. Findings indicate a stable operating range for mass flow rate between 0.74 and 3.74 kg/s. At the lower limit (0.74 kg/s), the maximum Mach number within… More >

  • Open Access

    ARTICLE

    Participatory Rice Breeding in Rainfed Land to Sustainable Agriculture

    Vina Eka Aristya1, Sri Minarsih1, Kristamtini1, I Gusti Komang Dana Arsana1, Samijan1, Setyorini Widyayanti1, Sodiq Jauhari1, Arif Susila1, Ni Wayan Trisnawati1, I Ketut Mahaputra1, I Nyoman Suyasa1, Opik Mahendra2, Supriyanta3, Gilang Wirakusuma3, Taufan Alam3, Taryono3,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.7, pp. 2055-2073, 2025, DOI:10.32604/phyton.2025.065227 - 31 July 2025

    Abstract Rice, as a primary commodity, needs to be increased in production while facing the sustainability challenges of limited land, water resources, and climate change. The demand for rice productivity was not enough to rely only on the fertile fields’ ability; it is necessary to consider the rainfed land potential. Cultivation in rainfed land involves biophysical pressure, low production, and limited access to superior varieties. Participatory rice breeding aimed to identify farmers’ trait preferences and develop acceptable lines. A bottom-up approach involved 203 farmers from four rainfed fields in Indonesia, i.e., Semarang-Central Java, Kulon Progo-Yogyakarta, Tabanan-Bali,… More >

  • Open Access

    ARTICLE

    Software Defect Prediction Based on Semantic Views of Metrics: Clustering Analysis and Model Performance Analysis

    Baishun Zhou1,2, Haijiao Zhao3, Yuxin Wen2, Gangyi Ding1, Ying Xing3,*, Xinyang Lin4, Lei Xiao5

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5201-5221, 2025, DOI:10.32604/cmc.2025.065726 - 30 July 2025

    Abstract In recent years, with the rapid development of software systems, the continuous expansion of software scale and the increasing complexity of systems have led to the emergence of a growing number of software metrics. Defect prediction methods based on software metric elements highly rely on software metric data. However, redundant software metric data is not conducive to efficient defect prediction, posing severe challenges to current software defect prediction tasks. To address these issues, this paper focuses on the rational clustering of software metric data. Firstly, multiple software projects are evaluated to determine the preset number… More >

  • Open Access

    ARTICLE

    Performance Analysis of Various Forecasting Models for Multi-Seasonal Global Horizontal Irradiance Forecasting Using the India Region Dataset

    Manoharan Madhiarasan*

    Energy Engineering, Vol.122, No.8, pp. 2993-3011, 2025, DOI:10.32604/ee.2025.068358 - 24 July 2025

    Abstract Accurate Global Horizontal Irradiance (GHI) forecasting has become vital for successfully integrating solar energy into the electrical grid because of the expanding demand for green power and the worldwide shift favouring green energy resources. Particularly considering the implications of the aggressive GHG emission targets, accurate GHI forecasting has become vital for developing, designing, and operational managing solar energy systems. This research presented the core concepts of modelling and performance analysis of the application of various forecasting models such as ARIMA (Autoregressive Integrated Moving Average), Elaman NN (Elman Neural Network), RBFN (Radial Basis Function Neural Network),… More >

  • Open Access

    ARTICLE

    Optimization of Structure and Mechanical Performance Analysis of Double-Layer Hole Oil Boom in Rapid River Channels

    Liqiong Chen1, Jie Pang1, Kai Zhang1,*, Juemei Pang2, Haonan Liu3, Quan Fang1

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 937-952, 2025, DOI:10.32604/sdhm.2025.063177 - 30 June 2025

    Abstract In order to reduce the ecological environmental pollution and economic losses caused by oil spill accidents from cross-river oil pipelines, this paper studies the structures of oil containment booms used for intercepting oil spills in rapid rivers and proposes a new type of double-layer hole oil containment boom. By establishing a solid mechanics model, the geometric deformation and stress-strain distribution patterns of the double-layer hole oil containment boom under rapid flow velocities were analyzed. Additionally, the impact of the skirt angle, hole size, and porosity on the mechanical properties of the new oil containment boom More >

  • Open Access

    ARTICLE

    Performance Analysis of Foamed Fracturing Fluids Based on Microbial Polysaccharides and Surfactants in High-Temperature and High-Salinity Reservoirs

    Zhiqiang Jiang1, Zili Li1, Bin Liang2, Miao He1, Weishou Hu3, Jun Tang3, Chao Song4, Nanxin Zheng5,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.6, pp. 1397-1416, 2025, DOI:10.32604/fdmp.2025.062737 - 30 June 2025

    Abstract Microbial polysaccharides, due to their unique physicochemical properties, have been shown to effectively enhance the stability of foam fracturing fluids. However, the combined application of microbial polysaccharides and surfactants under high-temperature and high-salinity conditions remain poorly understood. In this study, we innovatively investigate this problem with a particular focus on foam stabilization mechanisms. By employing the Waring blender method, the optimal surfactant-microbial polysaccharide blends are identified, and the foam stability, rheological properties, and decay behavior in different systems under varying conditions are systematically analyzed for the first time. The results reveal that microbial polysaccharides significantly More >

Displaying 1-10 on page 1 of 82. Per Page