Tina Babu1, Deepa Gupta1, Tripty Singh1,*, Shahin Hameed2, Mohammed Zakariah3, Yousef Ajami Alotaibi4
CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 99-128, 2021, DOI:10.32604/cmc.2021.016341
Abstract Automated grading of colon biopsy images across all magnifications is challenging because of tailored segmentation and dependent features on each magnification. This work presents a novel approach of robust magnification-independent colon cancer grading framework to distinguish colon biopsy images into four classes: normal, well, moderate, and poor. The contribution of this research is to develop a magnification invariant hybrid feature set comprising cartoon feature, Gabor wavelet, wavelet moments, HSV histogram, color auto-correlogram, color moments, and morphological features that can be used to characterize different grades. Besides, the classifier is modeled as a multiclass structure with… More >