Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (98)
  • Open Access

    ARTICLE

    Utilizing Machine Learning and SHAP Values for Improved and Transparent Energy Usage Predictions

    Faisal Ghazi Beshaw1, Thamir Hassan Atyia2, Mohd Fadzli Mohd Salleh1, Mohamad Khairi Ishak3, Abdul Sattar Din1,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3553-3583, 2025, DOI:10.32604/cmc.2025.061400 - 16 April 2025

    Abstract The significance of precise energy usage forecasts has been highlighted by the increasing need for sustainability and energy efficiency across a range of industries. In order to improve the precision and openness of energy consumption projections, this study investigates the combination of machine learning (ML) methods with Shapley additive explanations (SHAP) values. The study evaluates three distinct models: the first is a Linear Regressor, the second is a Support Vector Regressor, and the third is a Decision Tree Regressor, which was scaled up to a Random Forest Regressor/Additions made were the third one which was… More >

  • Open Access

    ARTICLE

    Multi-Neighborhood Enhanced Harris Hawks Optimization for Efficient Allocation of Hybrid Renewable Energy System with Cost and Emission Reduction

    Elaine Yi-Ling Wu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1185-1214, 2025, DOI:10.32604/cmes.2025.064636 - 11 April 2025

    Abstract Hybrid renewable energy systems (HRES) offer cost-effectiveness, low-emission power solutions, and reduced dependence on fossil fuels. However, the renewable energy allocation problem remains challenging due to complex system interactions and multiple operational constraints. This study develops a novel Multi-Neighborhood Enhanced Harris Hawks Optimization (MNEHHO) algorithm to address the allocation of HRES components. The proposed approach integrates key technical parameters, including charge-discharge efficiency, storage device configurations, and renewable energy fraction. We formulate a comprehensive mathematical model that simultaneously minimizes levelized energy costs and pollutant emissions while maintaining system reliability. The MNEHHO algorithm employs multiple neighborhood structures… More >

  • Open Access

    ARTICLE

    Monthly Reduced Time-Period Scheduling of Thermal Generators and Energy Storage Considering Daily Minimum Chargeable Energy of Energy Storage

    Xingxu Zhu1,*, Shiye Wang1, Gangui Yan1, Junhui Li1, Hongda Dong2, Chenggang Li2

    Energy Engineering, Vol.122, No.4, pp. 1469-1489, 2025, DOI:10.32604/ee.2025.059956 - 31 March 2025

    Abstract To address the excessive complexity of monthly scheduling and the impact of uncertain net load on the chargeable energy of storage, a reduced time-period monthly scheduling model for thermal generators and energy storage, incorporating daily minimum chargeable energy constraints, was developed. Firstly, considering the variations in the frequency of unit start-ups and shutdowns under different levels of net load fluctuation, a method was proposed to reduce decision time periods for unit start-up and shut-down operations. This approach, based on the characteristics of net load fluctuations, minimizes the decision variables of units, thereby simplifying the monthly… More >

  • Open Access

    REVIEW

    Recent Advances in Polymer-Based Photocatalysts for Environmental Remediation and Energy Conversion: A Review

    Surajudeen Sikiru1,*, Yusuf Olanrewaju Busari2,3, John Oluwadamilola Olutoki4, Mohd Muzamir Mahat1, Sanusi Yekinni Kolawole5

    Journal of Polymer Materials, Vol.42, No.1, pp. 1-31, 2025, DOI:10.32604/jpm.2025.058936 - 27 March 2025

    Abstract Photocatalysis is a crucial technique for environmental cleanup and renewable energy generation. Polymer-based photocatalysts have attracted interest due to their adaptability, adjustable chemical characteristics, and enhanced light absorption efficiency. Unlike traditional inorganic photocatalysts, we can optimize polymeric systems to enhance photocatalytic efficiency and yield significant advantages in environmental remediation and energy conversion applications. This study talks about the latest developments in polymer-based photocatalysts and how important they are for cleaning water, breaking down pollutants, and making renewable energy through processes like hydrogen production and CO2 reduction. These materials are proficient in degrading harmful pollutants such as… More >

  • Open Access

    ARTICLE

    Charcoal Briquette Manufactured from Indonesian Sugar Palm Bunches (Arenga longipes Mogea) as Biomass-Based New Renewable Energy

    Luthfi Hakim1,*, Apri Heri Iswanto1,*, Yunida Syafriani Lubis2, Adam Jagwani Wirawan1, Ridwanti Batubara1, Nam Hum Kim3, Petar Antov4, Tomasz Rogoziński5, Lee Seng Hua6, Lum Wei Chen7, Rangabhashiyam Selvasembian8, Jayusman2, Jajang Sutiawan9

    Journal of Renewable Materials, Vol.13, No.3, pp. 637-650, 2025, DOI:10.32604/jrm.2025.056365 - 20 March 2025

    Abstract The utilisation of sugar palm bunches-charcoal briquettes (SPB-CB) represents a significant advancement in biomass energy. This study aimed to analyse the properties of charcoal briquettes produced from SPB (Arenga longipes). The experiment involved categorising the dimensions of charcoal powder into three specific particle sizes: 20–40 mesh, 40–60 mesh, and particles that could pass through a 60-mesh screen. The charcoal powder will be combined with tapioca as a binding agent at three specific concentrations: 11%, 13%, and 15%. The research findings indicate that the samples underwent 60 mesh passes achieved the maximum briquette density, with an average… More >

  • Open Access

    ARTICLE

    Coordinated Service Restoration of Integrated Power and Gas Systems with Renewable Energy Sources

    Xincong Shi1,2, Yuze Ji3,*, Xinrui Wang3, Ruimin Tian3, Chao Zhang2

    Energy Engineering, Vol.122, No.3, pp. 1199-1220, 2025, DOI:10.32604/ee.2025.061586 - 07 March 2025

    Abstract With the development of integrated power and gas distribution systems (IPGS) incorporating renewable energy sources (RESs), coordinating the restoration processes of the power distribution system (PS) and the gas distribution system (GS) by utilizing the benefits of RESs enhances service restoration. In this context, this paper proposes a coordinated service restoration framework that considers the uncertainty in RESs and the bi-directional restoration interactions between the PS and GS. Additionally, a coordinated service restoration model is developed considering the two systems’ interdependency and the GS’s dynamic characteristics. The objective is to maximize the system resilience index… More >

  • Open Access

    REVIEW

    Optimal Location of Renewable Energy Generators in Transmission and Distribution System of Deregulated Power Sector: A Review

    Digambar Singh1, Najat Elgeberi2, Mohammad Aljaidi3,*, Ramesh Kumar4,5, Rabia Emhamed Al Mamlook6, Manish Kumar Singla4,7,8,*

    Energy Engineering, Vol.122, No.3, pp. 823-859, 2025, DOI:10.32604/ee.2025.059309 - 07 March 2025

    Abstract The literature on multi-attribute optimization for renewable energy source (RES) placement in deregulated power markets is extensive and diverse in methodology. This study focuses on the most relevant publications directly addressing the research problem at hand. Similarly, while the body of work on optimal location and sizing of renewable energy generators (REGs) in balanced distribution systems is substantial, only the most pertinent sources are cited, aligning closely with the study’s objective function. A comprehensive literature review reveals several key research areas: RES integration, RES-related optimization techniques, strategic placement of wind and solar generation, and RES… More >

  • Open Access

    ARTICLE

    Influences of Financial Development and Energy Price on Renewable Energy: An Italian Case

    Asif Raihan1,*, Mohammad Ridwan2, Mahdi Salehi3, Grzegorz Zimon4,*

    Energy Engineering, Vol.122, No.2, pp. 493-514, 2025, DOI:10.32604/ee.2025.059016 - 31 January 2025

    Abstract Global climate change has created substantial difficulties in the areas of sustainability, development, and environmental conservation due to the widespread dependence on fossil fuels for energy production. Nevertheless, the promotion of renewable energy programs has the potential to significantly expedite endeavors aimed at tackling climate change. Thus, it is essential to conduct a thorough analysis that considers the financial aspects to fully understand the main hurdles that are preventing the advancement of renewable energy initiatives. Italy is a leading country in the worldwide deployment of renewable energy. The objective of this research is to assess… More > Graphic Abstract

    Influences of Financial Development and Energy Price on Renewable Energy: An Italian Case

  • Open Access

    ARTICLE

    CRITIC-CoCoSo Model Application in Hybrid Solar-Wind Energy Plant Location Selection Problem: A Case Study in Vietnam

    Viet Tinh Nguyen, Rujira Chaysiri*

    Energy Engineering, Vol.122, No.2, pp. 515-536, 2025, DOI:10.32604/ee.2024.057786 - 31 January 2025

    Abstract This paper presents a novel multi-criteria decision-making (MCDM) model for selecting optimal locations for a solar-wind hybrid energy plant in Vietnam. The study employs the Criteria Importance Through Intercriteria Correlation (CRITIC) and Combined Compromise Solution (CoCoSo) methods to address the challenge of evaluating potential sites based on a range of economic, technical, environmental, and social criteria. By integrating CRITIC for criteria weighting and CoCoSo for ranking alternatives, the study underscores the importance of objective, data-driven approaches in the strategic planning and implementation of sustainable energy projects. The results identify Ham Thuan Nam District in Binh More >

  • Open Access

    ARTICLE

    Analysis of Renewable Energy Absorption and Economic Feasibility in Multi-Energy Complementary Systems under Spot Market Conditions

    Xiuyun Wang, Zipeng Zhang, Chuang Liu*, Guoliang Bian

    Energy Engineering, Vol.122, No.2, pp. 577-619, 2025, DOI:10.32604/ee.2024.056748 - 31 January 2025

    Abstract As the power system transitions to a new green and low-carbon paradigm, the penetration of renewable energy in China’s power system is gradually increasing. However, the variability and uncertainty of renewable energy output limit its profitability in the electricity market and hinder its market-based integration. This paper first constructs a wind-solar-thermal multi-energy complementary system, analyzes its external game relationships, and develops a bi-level market optimization model. Then, it considers the contribution levels of internal participants to establish a comprehensive internal distribution evaluation index system. Finally, simulation studies using the IEEE 30-bus system demonstrate that the More >

Displaying 1-10 on page 1 of 98. Per Page