Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    ARTICLE

    Leveraging Deep Learning for Precision-Aware Road Accident Detection

    Kunal Thakur1, Ashu Taneja1,*, Ali Alqahtani2, Nayef Alqahtani3

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4827-4848, 2025, DOI:10.32604/cmc.2025.067901 - 23 October 2025

    Abstract Accident detection plays a critical role in improving traffic safety by enabling timely emergency response and reducing the impact of road incidents. The main challenge lies in achieving real-time, reliable and highly accurate detection across diverse Internet-of-vehicles (IoV) environments. To overcome this challenge, this paper leverages deep learning to automatically learn patterns from visual data to detect accidents with high accuracy. A visual classification model based on the ResNet-50 architecture is presented for distinguishing between accident and non-accident images. The model is trained and tested on a labeled dataset and achieves an overall accuracy of… More >

  • Open Access

    ARTICLE

    Secure Digital Image Watermarking Technique Based on ResNet-50 Architecture

    Satya Narayan Das1,2,*, Mrutyunjaya Panda2,*

    Intelligent Automation & Soft Computing, Vol.39, No.6, pp. 1073-1100, 2024, DOI:10.32604/iasc.2024.057013 - 30 December 2024

    Abstract In today’s world of massive data and interconnected networks, it’s crucial to burgeon a secure and efficient digital watermarking method to protect the copyrights of digital content. Existing research primarily focuses on deep learning-based approaches to improve the quality of watermarked images, but they have some flaws. To overcome this, the deep learning digital image watermarking model with highly secure algorithms is proposed to secure the digital image. Recently, quantum logistic maps, which combine the concept of quantum computing with traditional techniques, have been considered a niche and promising area of research that has attracted… More >

  • Open Access

    ARTICLE

    Posture Detection of Heart Disease Using Multi-Head Attention Vision Hybrid (MHAVH) Model

    Hina Naz1, Zuping Zhang1,*, Mohammed Al-Habib1, Fuad A. Awwad2, Emad A. A. Ismail2, Zaid Ali Khan3

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2673-2696, 2024, DOI:10.32604/cmc.2024.049186 - 15 May 2024

    Abstract Cardiovascular disease is the leading cause of death globally. This disease causes loss of heart muscles and is also responsible for the death of heart cells, sometimes damaging their functionality. A person’s life may depend on receiving timely assistance as soon as possible. Thus, minimizing the death ratio can be achieved by early detection of heart attack (HA) symptoms. In the United States alone, an estimated 610,000 people die from heart attacks each year, accounting for one in every four fatalities. However, by identifying and reporting heart attack symptoms early on, it is possible to… More >

  • Open Access

    ARTICLE

    U-Net Inspired Deep Neural Network-Based Smoke Plume Detection in Satellite Images

    Ananthakrishnan Balasundaram1,2, Ayesha Shaik1,2,*, Japmann Kaur Banga2, Aman Kumar Singh2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 779-799, 2024, DOI:10.32604/cmc.2024.048362 - 25 April 2024

    Abstract Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have been identified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions is essential for a comprehensive understanding of their impact on the Earth’s climate and for effectively enforcing emission regulations at a large scale. This work examines the feasibility of detecting and quantifying industrial smoke plumes using freely accessible geo-satellite imagery. The existing system has so many lagging factors such as limitations in accuracy, robustness, and efficiency and these factors hinder the effectiveness in supporting timely response… More >

  • Open Access

    ARTICLE

    Enhancing Skin Cancer Diagnosis with Deep Learning: A Hybrid CNN-RNN Approach

    Syeda Shamaila Zareen1,*, Guangmin Sun1,*, Mahwish Kundi2, Syed Furqan Qadri3, Salman Qadri4

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1497-1519, 2024, DOI:10.32604/cmc.2024.047418 - 25 April 2024

    Abstract Skin cancer diagnosis is difficult due to lesion presentation variability. Conventional methods struggle to manually extract features and capture lesions spatial and temporal variations. This study introduces a deep learning-based Convolutional and Recurrent Neural Network (CNN-RNN) model with a ResNet-50 architecture which used as the feature extractor to enhance skin cancer classification. Leveraging synergistic spatial feature extraction and temporal sequence learning, the model demonstrates robust performance on a dataset of 9000 skin lesion photos from nine cancer types. Using pre-trained ResNet-50 for spatial data extraction and Long Short-Term Memory (LSTM) for temporal dependencies, the model More >

  • Open Access

    ARTICLE

    Performance Analysis of Intelligent Neural-Based Deep Learning System on Rank Images Classification

    Muhammad Hameed Siddiqi1,*, Asfandyar Khan2, Muhammad Bilal Khan2, Abdullah Khan2, Madallah Alruwaili1, Saad Alanazi1

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2219-2239, 2023, DOI:10.32604/csse.2023.040212 - 28 July 2023

    Abstract The use of the internet is increasing all over the world on a daily basis in the last two decades. The increase in the internet causes many sexual crimes, such as sexual misuse, domestic violence, and child pornography. Various research has been done for pornographic image detection and classification. Most of the used models used machine learning techniques and deep learning models which show less accuracy, while the deep learning model ware used for classification and detection performed better as compared to machine learning. Therefore, this research evaluates the performance analysis of intelligent neural-based deep… More >

  • Open Access

    ARTICLE

    Android Malware Detection Using ResNet-50 Stacking

    Lojain Nahhas1, Marwan Albahar1,*, Abdullah Alammari2, Anca Jurcut3

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3997-4014, 2023, DOI:10.32604/cmc.2023.028316 - 31 October 2022

    Abstract There has been an increase in attacks on mobile devices, such as smartphones and tablets, due to their growing popularity. Mobile malware is one of the most dangerous threats, causing both security breaches and financial losses. Mobile malware is likely to continue to evolve and proliferate to carry out a variety of cybercrimes on mobile devices. Mobile malware specifically targets Android operating system as it has grown in popularity. The rapid proliferation of Android malware apps poses a significant security risk to users, making static and manual analysis of malicious files difficult. Therefore, efficient identification… More >

  • Open Access

    ARTICLE

    Sika Deer Facial Recognition Model Based on SE-ResNet

    He Gong1,3,4, Lin Chen1, Haohong Pan1, Shijun Li2,5, Yin Guo1, Lili Fu1, Tianli Hu1,3,4,*, Ye Mu1,3, Thobela Louis Tyasi6

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 6015-6027, 2022, DOI:10.32604/cmc.2022.027160 - 21 April 2022

    Abstract The scale of deer breeding has gradually increased in recent years and better information management is necessary, which requires the identification of individual deer. In this paper, a deer face dataset is produced using face images obtained from different angles, and an improved residual neural network (ResNet)-based recognition model is proposed to extract the features of deer faces, which have high similarity. The model is based on ResNet-50, which reduces the depth of the model, and the network depth is only 29 layers; the model connects Squeeze-and-Excitation (SE) modules at each of the four layers… More >

  • Open Access

    ARTICLE

    A New Method for Scene Classification from the Remote Sensing Images

    Purnachand Kollapudi1, Saleh Alghamdi2, Neenavath Veeraiah3,*, Youseef Alotaibi4, Sushma Thotakura5, Abdulmajeed Alsufyani6

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1339-1355, 2022, DOI:10.32604/cmc.2022.025118 - 24 February 2022

    Abstract The mission of classifying remote sensing pictures based on their contents has a range of applications in a variety of areas. In recent years, a lot of interest has been generated in researching remote sensing image scene classification. Remote sensing image scene retrieval, and scene-driven remote sensing image object identification are included in the Remote sensing image scene understanding (RSISU) research. In the last several years, the number of deep learning (DL) methods that have emerged has caused the creation of new approaches to remote sensing image classification to gain major breakthroughs, providing new research… More >

  • Open Access

    ARTICLE

    Automatic Human Detection Using Reinforced Faster-RCNN for Electricity Conservation System

    S. Ushasukhanya*, M. Karthikeyan

    Intelligent Automation & Soft Computing, Vol.32, No.2, pp. 1261-1275, 2022, DOI:10.32604/iasc.2022.022654 - 17 November 2021

    Abstract Electricity conservation systems are designed to conserve electricity to manage the bridge between the high raising demand and the production. Such systems have been so far using sensors to detect the necessity which adds an additional cost to the setup. Closed-circuit Television (CCTV) has been installed in almost everywhere around us especially in commercial places. Interpretation of these CCTV images is being carried out for various reasons to elicit the information from it. Hence a framework for electricity conservation that enables the electricity supply only when required, using existing resources would be a cost effective… More >

Displaying 1-10 on page 1 of 11. Per Page