Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (94)
  • Open Access

    ARTICLE

    Credit Card Fraud Detection Using Improved Deep Learning Models

    Sumaya S. Sulaiman1,2,*, Ibraheem Nadher3, Sarab M. Hameed2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1049-1069, 2024, DOI:10.32604/cmc.2023.046051 - 30 January 2024

    Abstract Fraud of credit cards is a major issue for financial organizations and individuals. As fraudulent actions become more complex, a demand for better fraud detection systems is rising. Deep learning approaches have shown promise in several fields, including detecting credit card fraud. However, the efficacy of these models is heavily dependent on the careful selection of appropriate hyperparameters. This paper introduces models that integrate deep learning models with hyperparameter tuning techniques to learn the patterns and relationships within credit card transaction data, thereby improving fraud detection. Three deep learning models: AutoEncoder (AE), Convolution Neural Network… More >

  • Open Access

    ARTICLE

    Modified DS np Chart Using Generalized Multiple Dependent State Sampling under Time Truncated Life Test

    Wimonmas Bamrungsetthapong1, Pramote Charongrattanasakul2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2471-2495, 2024, DOI:10.32604/cmes.2023.031433 - 15 December 2023

    Abstract This study presents the design of a modified attributed control chart based on a double sampling (DS) np chart applied in combination with generalized multiple dependent state (GMDS) sampling to monitor the mean life of the product based on the time truncated life test employing the Weibull distribution. The control chart developed supports the examination of the mean lifespan variation for a particular product in the process of manufacturing. Three control limit levels are used: the warning control limit, inner control limit, and outer control limit. Together, they enhance the capability for variation detection. A genetic… More >

  • Open Access

    ARTICLE

    Ash Detection of Coal Slime Flotation Tailings Based on Chromatographic Filter Paper Sampling and Multi-Scale Residual Network

    Wenbo Zhu1, Neng Liu1, Zhengjun Zhu2,*, Haibing Li1, Weijie Fu1, Zhongbo Zhang1, Xinghao Zhang1

    Intelligent Automation & Soft Computing, Vol.38, No.3, pp. 259-273, 2023, DOI:10.32604/iasc.2023.041860 - 27 February 2024

    Abstract The detection of ash content in coal slime flotation tailings using deep learning can be hindered by various factors such as foam, impurities, and changing lighting conditions that disrupt the collection of tailings images. To address this challenge, we present a method for ash content detection in coal slime flotation tailings. This method utilizes chromatographic filter paper sampling and a multi-scale residual network, which we refer to as MRCN. Initially, tailings are sampled using chromatographic filter paper to obtain static tailings images, effectively isolating interference factors at the flotation site. Subsequently, the MRCN, consisting of… More >

  • Open Access

    ARTICLE

    CFSA-Net: Efficient Large-Scale Point Cloud Semantic Segmentation Based on Cross-Fusion Self-Attention

    Jun Shu1,2, Shuai Wang1,2, Shiqi Yu1,2, Jie Zhang3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2677-2697, 2023, DOI:10.32604/cmc.2023.045818 - 26 December 2023

    Abstract Traditional models for semantic segmentation in point clouds primarily focus on smaller scales. However, in real-world applications, point clouds often exhibit larger scales, leading to heavy computational and memory requirements. The key to handling large-scale point clouds lies in leveraging random sampling, which offers higher computational efficiency and lower memory consumption compared to other sampling methods. Nevertheless, the use of random sampling can potentially result in the loss of crucial points during the encoding stage. To address these issues, this paper proposes cross-fusion self-attention network (CFSA-Net), a lightweight and efficient network architecture specifically designed for… More >

  • Open Access

    ARTICLE

    Detection of Different Stages of Alzheimer’s Disease Using CNN Classifier

    S M Hasan Mahmud1,2, Md Mamun Ali3, Mohammad Fahim Shahriar1, Fahad Ahmed Al-Zahrani4, Kawsar Ahmed5,6,*, Dip Nandi1, Francis M. Bui5

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3933-3948, 2023, DOI:10.32604/cmc.2023.039020 - 08 October 2023

    Abstract Alzheimer’s disease (AD) is a neurodevelopmental impairment that results in a person’s behavior, thinking, and memory loss. The most common symptoms of AD are losing memory and early aging. In addition to these, there are several serious impacts of AD. However, the impact of AD can be mitigated by early-stage detection though it cannot be cured permanently. Early-stage detection is the most challenging task for controlling and mitigating the impact of AD. The study proposes a predictive model to detect AD in the initial phase based on machine learning and a deep learning approach to… More >

  • Open Access

    ARTICLE

    A Positive Influence Maximization Algorithm in Signed Social Networks

    Wenlong Zhu1,2,*, Yang Huang1, Shuangshuang Yang3, Yu Miao1, Chongyuan Peng1

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1977-1994, 2023, DOI:10.32604/cmc.2023.040998 - 30 August 2023

    Abstract The influence maximization (IM) problem aims to find a set of seed nodes that maximizes the spread of their influence in a social network. The positive influence maximization (PIM) problem is an extension of the IM problem, which consider the polar relation of nodes in signed social networks so that the positive influence of seeds can be the most widely spread. To solve the PIM problem, this paper proposes the polar and decay related independent cascade (IC-PD) model to simulate the influence propagation of nodes and the decay of information during the influence propagation in… More >

  • Open Access

    ARTICLE

    Intermediary RRT*-PSO: A Multi-Directional Hybrid Fast Convergence Sampling-Based Path Planning Algorithm

    Loc Q. Huynh1, Ly V. Tran1, Phuc N. K. Phan1, Zhiqiu Yu2, Son V. T. Dao1,2,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2281-2300, 2023, DOI:10.32604/cmc.2023.034872 - 30 August 2023

    Abstract Path planning is a prevalent process that helps mobile robots find the most efficient pathway from the starting position to the goal position to avoid collisions with obstacles. In this paper, we propose a novel path planning algorithm–Intermediary RRT*-PSO-by utilizing the exploring speed advantages of Rapidly exploring Random Trees and using its solution to feed to a metaheuristic-based optimizer, Particle swarm optimization (PSO), for fine-tuning and enhancement. In Phase 1, the start and goal trees are initialized at the starting and goal positions, respectively, and the intermediary tree is initialized at a random unexplored region… More >

  • Open Access

    ARTICLE

    Airfoil Shape Optimisation Using a Multi-Fidelity Surrogate-Assisted Metaheuristic with a New Multi-Objective Infill Sampling Technique

    Cho Mar Aye1, Kittinan Wansaseub2, Sumit Kumar3, Ghanshyam G. Tejani4, Sujin Bureerat1, Ali R. Yildiz5, Nantiwat Pholdee1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2111-2128, 2023, DOI:10.32604/cmes.2023.028632 - 03 August 2023

    Abstract This work presents multi-fidelity multi-objective infill-sampling surrogate-assisted optimization for airfoil shape optimization. The optimization problem is posed to maximize the lift and drag coefficient ratio subject to airfoil geometry constraints. Computational Fluid Dynamic (CFD) and XFoil tools are used for high and low-fidelity simulations of the airfoil to find the real objective function value. A special multi-objective sub-optimization problem is proposed for multiple points infill sampling exploration to improve the surrogate model constructed. To validate and further assess the proposed methods, a conventional surrogate-assisted optimization method and an infill sampling surrogate-assisted optimization criterion are applied More > Graphic Abstract

    Airfoil Shape Optimisation Using a Multi-Fidelity Surrogate-Assisted Metaheuristic with a New Multi-Objective Infill Sampling Technique

  • Open Access

    ARTICLE

    Detecting Ethereum Ponzi Schemes Through Opcode Context Analysis and Oversampling-Based AdaBoost Algorithm

    Mengxiao Wang1,2, Jing Huang1,2,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1023-1042, 2023, DOI:10.32604/csse.2023.039569 - 26 May 2023

    Abstract Due to the anonymity of blockchain, frequent security incidents and attacks occur through it, among which the Ponzi scheme smart contract is a classic type of fraud resulting in huge economic losses. Machine learning-based methods are believed to be promising for detecting ethereum Ponzi schemes. However, there are still some flaws in current research, e.g., insufficient feature extraction of Ponzi scheme smart contracts, without considering class imbalance. In addition, there is room for improvement in detection precision. Aiming at the above problems, this paper proposes an ethereum Ponzi scheme detection scheme through opcode context analysis… More >

  • Open Access

    ARTICLE

    Deep Learning Based Sentiment Analysis of COVID-19 Tweets via Resampling and Label Analysis

    Mamoona Humayun1,*, Danish Javed2, Nz Jhanjhi2, Maram Fahaad Almufareh1, Saleh Naif Almuayqil1

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 575-591, 2023, DOI:10.32604/csse.2023.038765 - 26 May 2023

    Abstract Twitter has emerged as a platform that produces new data every day through its users which can be utilized for various purposes. People express their unique ideas and views on multiple topics thus providing vast knowledge. Sentiment analysis is critical from the corporate and political perspectives as it can impact decision-making. Since the proliferation of COVID-19, it has become an important challenge to detect the sentiment of COVID-19-related tweets so that people’s opinions can be tracked. The purpose of this research is to detect the sentiment of people regarding this problem with limited data as… More >

Displaying 11-20 on page 2 of 94. Per Page