Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (103)
  • Open Access

    ARTICLE

    Improved Leaf Chlorophyll Content Estimation with Deep Learning and Feature Optimization Using Hyperspectral Measurements

    Xianfeng Zhou1,2,*, Ruiju Sun1, Zhaojie Zhang1, Yuanyuan Song1, Lijiao Jin1, Lin Yuan3

    Phyton-International Journal of Experimental Botany, Vol.94, No.2, pp. 503-519, 2025, DOI:10.32604/phyton.2025.060827 - 06 March 2025

    Abstract An accurate and robust estimation of leaf chlorophyll content (LCC) is very important to better know the process of material and energy exchange between plants and the environment. Compared with traditional remote sensing methods, abundant research has made progress in agronomic parameter retrieval using different CNN frameworks. Nevertheless, limited reports have paid attention to the problems, i.e., limited measured data, hyperspectral redundancy, and model convergence issues, when concerning CNN models for parameter estimation. Therefore, the present study tried to analyze the effects of synthetic data size expansion employing a Gaussian process regression (GPR) model for… More >

  • Open Access

    ARTICLE

    Diagnostic Method for Load Deviation in Ultra-Supercritical Units Based on MLNaNBDOS

    Mingzhu Tang1, Yujie Huang1, Dongxu Ji2, Hao Yu2,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 95-129, 2025, DOI:10.32604/fhmt.2025.061143 - 26 February 2025

    Abstract Load deviations between the output of ultra-supercritical (USC) coal-fired power units and automatic generation control (AGC) commands can adversely affect the safe and stable operation of these units and grid load dispatching. Data-driven diagnostic methods often fail to account for the imbalanced distribution of data samples, leading to reduced classification performance in diagnosing load deviations in USC units. To address the class imbalance issue in USC load deviation datasets, this study proposes a diagnostic method based on the multi-label natural neighbor boundary oversampling technique (MLNaNBDOS). The method is articulated in three phases. Initially, the traditional… More > Graphic Abstract

    Diagnostic Method for Load Deviation in Ultra-Supercritical Units Based on MLNaNBDOS

  • Open Access

    ARTICLE

    Detecting Ethereum Ponzi Scheme Based on Hybrid Sampling for Smart Contract

    Yuanjun Qu, Xiameng Si*, Haiyan Kang, Hanlin Zhou

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3111-3130, 2025, DOI:10.32604/cmc.2024.057368 - 17 February 2025

    Abstract With the widespread use of blockchain technology for smart contracts and decentralized applications on the Ethereum platform, the blockchain has become a cornerstone of trust in the modern financial system. However, its anonymity has provided new ways for Ponzi schemes to commit fraud, posing significant risks to investors. Current research still has some limitations, for example, Ponzi schemes are difficult to detect in the early stages of smart contract deployment, and data imbalance is not considered. In addition, there is room for improving the detection accuracy. To address the above issues, this paper proposes LT-SPSD… More >

  • Open Access

    ARTICLE

    Oversampling-Enhanced Feature Fusion-Based Hybrid ViT-1DCNN Model for Ransomware Cyber Attack Detection

    Muhammad Armghan Latif1, Zohaib Mushtaq2,*, Saifur Rahman3, Saad Arif4, Salim Nasar Faraj Mursal3, Muhammad Irfan3, Haris Aziz5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1667-1695, 2025, DOI:10.32604/cmes.2024.056850 - 27 January 2025

    Abstract Ransomware attacks pose a significant threat to critical infrastructures, demanding robust detection mechanisms. This study introduces a hybrid model that combines vision transformer (ViT) and one-dimensional convolutional neural network (1DCNN) architectures to enhance ransomware detection capabilities. Addressing common challenges in ransomware detection, particularly dataset class imbalance, the synthetic minority oversampling technique (SMOTE) is employed to generate synthetic samples for minority class, thereby improving detection accuracy. The integration of ViT and 1DCNN through feature fusion enables the model to capture both global contextual and local sequential features, resulting in comprehensive ransomware classification. Tested on the UNSW-NB15 More >

  • Open Access

    ARTICLE

    Enhancing Network Security: Leveraging Machine Learning for Integrated Protection and Intrusion Detection

    Nada Mohammed Murad1, Adnan Yousif Dawod2, Saadaldeen Rashid Ahmed3,4,*, Ravi Sekhar5, Pritesh Shah5

    Intelligent Automation & Soft Computing, Vol.40, pp. 1-27, 2025, DOI:10.32604/iasc.2024.058624 - 10 January 2025

    Abstract This study introduces an innovative hybrid approach that integrates deep learning with blockchain technology to improve cybersecurity, focusing on network intrusion detection systems (NIDS). The main goal is to overcome the shortcomings of conventional intrusion detection techniques by developing a more flexible and robust security architecture. We use seven unique machine learning models to improve detection skills, emphasizing data quality, traceability, and transparency, facilitated by a blockchain layer that safeguards against data modification and ensures auditability. Our technique employs the Synthetic Minority Oversampling Technique (SMOTE) to equilibrate the dataset, therefore mitigating prevalent class imbalance difficulties… More >

  • Open Access

    ARTICLE

    RE-SMOTE: A Novel Imbalanced Sampling Method Based on SMOTE with Radius Estimation

    Dazhi E1, Jiale Liu2, Ming Zhang1,*, Huiyuan Jiang2, Keming Mao2

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3853-3880, 2024, DOI:10.32604/cmc.2024.057538 - 19 December 2024

    Abstract Imbalance is a distinctive feature of many datasets, and how to make the dataset balanced become a hot topic in the machine learning field. The Synthetic Minority Oversampling Technique (SMOTE) is the classical method to solve this problem. Although much research has been conducted on SMOTE, there is still the problem of synthetic sample singularity. To solve the issues of class imbalance and diversity of generated samples, this paper proposes a hybrid resampling method for binary imbalanced data sets, RE-SMOTE, which is designed based on the improvements of two oversampling methods parameter-free SMOTE (PF-SMOTE) and… More >

  • Open Access

    ARTICLE

    Probabilistic Calculation of Tidal Currents for Wind Powered Systems Using PSO Improved LHS

    Hongsheng Su, Shilin Song*, Xingsheng Wang

    Energy Engineering, Vol.121, No.11, pp. 3289-3303, 2024, DOI:10.32604/ee.2024.054643 - 21 October 2024

    Abstract This paper introduces the Particle Swarm Optimization (PSO) algorithm to enhance the Latin Hypercube Sampling (LHS) process. The key objective is to mitigate the issues of lengthy computation times and low computational accuracy typically encountered when applying Monte Carlo Simulation (MCS) to LHS for probabilistic trend calculations. The PSO method optimizes sample distribution, enhances global search capabilities, and significantly boosts computational efficiency. To validate its effectiveness, the proposed method was applied to IEEE34 and IEEE-118 node systems containing wind power. The performance was then compared with Latin Hypercubic Important Sampling (LHIS), which integrates significant sampling More >

  • Open Access

    ARTICLE

    Improving Generalization for Hyperspectral Image Classification: The Impact of Disjoint Sampling on Deep Models

    Muhammad Ahmad1,*, Manuel Mazzara2, Salvatore Distefano3, Adil Mehmood Khan4, Hamad Ahmed Altuwaijri5

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 503-532, 2024, DOI:10.32604/cmc.2024.056318 - 15 October 2024

    Abstract Disjoint sampling is critical for rigorous and unbiased evaluation of state-of-the-art (SOTA) models e.g., Attention Graph and Vision Transformer. When training, validation, and test sets overlap or share data, it introduces a bias that inflates performance metrics and prevents accurate assessment of a model’s true ability to generalize to new examples. This paper presents an innovative disjoint sampling approach for training SOTA models for the Hyperspectral Image Classification (HSIC). By separating training, validation, and test data without overlap, the proposed method facilitates a fairer evaluation of how well a model can classify pixels it was… More >

  • Open Access

    ARTICLE

    Data-Driven Decision-Making for Bank Target Marketing Using Supervised Learning Classifiers on Imbalanced Big Data

    Fahim Nasir1, Abdulghani Ali Ahmed1,*, Mehmet Sabir Kiraz1, Iryna Yevseyeva1, Mubarak Saif2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1703-1728, 2024, DOI:10.32604/cmc.2024.055192 - 15 October 2024

    Abstract Integrating machine learning and data mining is crucial for processing big data and extracting valuable insights to enhance decision-making. However, imbalanced target variables within big data present technical challenges that hinder the performance of supervised learning classifiers on key evaluation metrics, limiting their overall effectiveness. This study presents a comprehensive review of both common and recently developed Supervised Learning Classifiers (SLCs) and evaluates their performance in data-driven decision-making. The evaluation uses various metrics, with a particular focus on the Harmonic Mean Score (F-1 score) on an imbalanced real-world bank target marketing dataset. The findings indicate… More >

  • Open Access

    ARTICLE

    A Path Planning Algorithm Based on Improved RRT Sampling Region

    Xiangkui Jiang*, Zihao Wang, Chao Dong

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4303-4323, 2024, DOI:10.32604/cmc.2024.054640 - 12 September 2024

    Abstract

    For the problem of slow search and tortuous paths in the Rapidly Exploring Random Tree (RRT) algorithm, a feedback-biased sampling RRT, called FS-RRT, is proposed based on RRT. Firstly, to improve the sampling efficiency of RRT to shorten the search time, the search area of the random tree is restricted to improve the sampling efficiency. Secondly, to obtain better information about obstacles to shorten the path length, a feedback-biased sampling strategy is used instead of the traditional random sampling, the collision of the expanding node with an obstacle generates feedback information so that the next

    More >

Displaying 1-10 on page 1 of 103. Per Page