Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,008)
  • Open Access

    ARTICLE

    An Intelligent Multi-Stage GA–SVM Hybrid Optimization Framework for Feature Engineering and Intrusion Detection in Internet of Things Networks

    Isam Bahaa Aldallal1, Abdullahi Abdu Ibrahim1,*, Saadaldeen Rashid Ahmed2,3

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.075212 - 10 February 2026

    Abstract The rapid growth of IoT networks necessitates efficient Intrusion Detection Systems (IDS) capable of addressing dynamic security threats under constrained resource environments. This paper proposes a hybrid IDS for IoT networks, integrating Support Vector Machine (SVM) and Genetic Algorithm (GA) for feature selection and parameter optimization. The GA reduces the feature set from 41 to 7, achieving a 30% reduction in overhead while maintaining an attack detection rate of 98.79%. Evaluated on the NSL-KDD dataset, the system demonstrates an accuracy of 97.36%, a recall of 98.42%, and an F1-score of 96.67%, with a low false More >

  • Open Access

    ARTICLE

    TeachSecure-CTI: Adaptive Cybersecurity Curriculum Generation Using Threat Dynamics and AI

    Alaa Tolah*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074997 - 10 February 2026

    Abstract The rapidly evolving cybersecurity threat landscape exposes a critical flaw in traditional educational programs where static curricula cannot adapt swiftly to novel attack vectors. This creates a significant gap between theoretical knowledge and the practical defensive capabilities needed in the field. To address this, we propose TeachSecure-CTI, a novel framework for adaptive cybersecurity curriculum generation that integrates real-time Cyber Threat Intelligence (CTI) with AI-driven personalization. Our framework employs a layered architecture featuring a CTI ingestion and clustering module, natural language processing for semantic concept extraction, and a reinforcement learning agent for adaptive content sequencing. By… More >

  • Open Access

    ARTICLE

    A Knowledge-Distilled CharacterBERT-BiLSTM-ATT Framework for Lightweight DGA Detection in IoT Devices

    Chengqi Liu1, Yongtao Li2, Weiping Zou3,*, Deyu Lin4,5,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074975 - 10 February 2026

    Abstract With the large-scale deployment of the Internet of Things (IoT) devices, their weak security mechanisms make them prime targets for malware attacks. Attackers often use Domain Generation Algorithm (DGA) to generate random domain names, hiding the real IP of Command and Control (C&C) servers to build botnets. Due to the randomness and dynamics of DGA, traditional methods struggle to detect them accurately, increasing the difficulty of network defense. This paper proposes a lightweight DGA detection model based on knowledge distillation for resource-constrained IoT environments. Specifically, a teacher model combining CharacterBERT, a bidirectional long short-term memory More >

  • Open Access

    ARTICLE

    A Robust Image Encryption Method Based on the Randomness Properties of DNA Nucleotides

    Bassam Al-Shargabi1,*, Mohammed Abbas Fadhil Al-Husainy2, Abdelrahman Abuarqoub1, Omar Albahbouh Aldabbas3

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074550 - 10 February 2026

    Abstract The advent of 5G technology has significantly enhanced the transmission of images over networks, expanding data accessibility and exposure across various applications in digital technology and social media. Consequently, the protection of sensitive data has become increasingly critical. Regardless of the complexity of the encryption algorithm used, a robust and highly secure encryption key is essential, with randomness and key space being crucial factors. This paper proposes a new Robust Deoxyribonucleic Acid (RDNA) nucleotide-based encryption method. The RDNA encryption method leverages the unique properties of DNA nucleotides, including their inherent randomness and extensive key space,… More >

  • Open Access

    ARTICLE

    Design of a Patrol and Security Robot with Semantic Mapping and Obstacle Avoidance System Using RGB-D Camera and LiDAR

    Shu-Yin Chiang*, Shin-En Huang

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074528 - 10 February 2026

    Abstract This paper presents an intelligent patrol and security robot integrating 2D LiDAR and RGB-D vision sensors to achieve semantic simultaneous localization and mapping (SLAM), real-time object recognition, and dynamic obstacle avoidance. The system employs the YOLOv7 deep-learning framework for semantic detection and SLAM for localization and mapping, fusing geometric and visual data to build a high-fidelity 2D semantic map. This map enables the robot to identify and project object information for improved situational awareness. Experimental results show that object recognition reached 95.4% mAP@0.5. Semantic completeness increased from 68.7% (single view) to 94.1% (multi-view) with an More >

  • Open Access

    ARTICLE

    Detecting and Mitigating Cyberattacks on Load Frequency Control with Battery Energy Storage System

    Yunhao Yu1, Fuhua Luo1, Zhenyong Zhang2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074277 - 10 February 2026

    Abstract This paper investigates the detection and mitigation of coordinated cyberattacks on Load Frequency Control (LFC) systems integrated with Battery Energy Storage Systems (BESS). As renewable energy sources gain greater penetration, power grids are becoming increasingly vulnerable to cyber threats, potentially leading to frequency instability and widespread disruptions. We model two significant attack vectors: load-altering attacks (LAAs) and false data injection attacks (FDIAs) that corrupt frequency measurements. These are analyzed for their impact on grid frequency stability in both linear and nonlinear LFC models, incorporating generation rate constraints and nonlinear loads. A coordinated attack strategy is… More >

  • Open Access

    REVIEW

    Prompt Injection Attacks on Large Language Models: A Survey of Attack Methods, Root Causes, and Defense Strategies

    Tongcheng Geng1,#, Zhiyuan Xu2,#, Yubin Qu3,*, W. Eric Wong4

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074081 - 10 February 2026

    Abstract Large language models (LLMs) have revolutionized AI applications across diverse domains. However, their widespread deployment has introduced critical security vulnerabilities, particularly prompt injection attacks that manipulate model behavior through malicious instructions. Following Kitchenham’s guidelines, this systematic review synthesizes 128 peer-reviewed studies from 2022 to 2025 to provide a unified understanding of this rapidly evolving threat landscape. Our findings reveal a swift progression from simple direct injections to sophisticated multimodal attacks, achieving over 90% success rates against unprotected systems. In response, defense mechanisms show varying effectiveness: input preprocessing achieves 60%–80% detection rates and advanced architectural defenses More >

  • Open Access

    REVIEW

    Quantum Secure Multiparty Computation: Bridging Privacy, Security, and Scalability in the Post-Quantum Era

    Sghaier Guizani1,*, Tehseen Mazhar2,3,*, Habib Hamam4,5,6,7

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073883 - 10 February 2026

    Abstract The advent of quantum computing poses a significant challenge to traditional cryptographic protocols, particularly those used in Secure Multiparty Computation (MPC), a fundamental cryptographic primitive for privacy-preserving computation. Classical MPC relies on cryptographic techniques such as homomorphic encryption, secret sharing, and oblivious transfer, which may become vulnerable in the post-quantum era due to the computational power of quantum adversaries. This study presents a review of 140 peer-reviewed articles published between 2000 and 2025 that used different databases like MDPI, IEEE Explore, Springer, and Elsevier, examining the applications, types, and security issues with the solution of… More >

  • Open Access

    ARTICLE

    Detection of Maliciously Disseminated Hate Speech in Spanish Using Fine-Tuning and In-Context Learning Techniques with Large Language Models

    Tomás Bernal-Beltrán1, Ronghao Pan1, José Antonio García-Díaz1, María del Pilar Salas-Zárate2, Mario Andrés Paredes-Valverde2, Rafael Valencia-García1,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073629 - 10 February 2026

    Abstract The malicious dissemination of hate speech via compromised accounts, automated bot networks and malware-driven social media campaigns has become a growing cybersecurity concern. Automatically detecting such content in Spanish is challenging due to linguistic complexity and the scarcity of annotated resources. In this paper, we compare two predominant AI-based approaches for the forensic detection of malicious hate speech: (1) fine-tuning encoder-only models that have been trained in Spanish and (2) In-Context Learning techniques (Zero- and Few-Shot Learning) with large-scale language models. Our approach goes beyond binary classification, proposing a comprehensive, multidimensional evaluation that labels each… More >

  • Open Access

    ARTICLE

    Heterogeneous User Authentication and Key Establishment Protocol for Client-Server Environment

    Huihui Zhu1, Fei Tang2,*, Chunhua Jin3, Ping Wang1

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073550 - 10 February 2026

    Abstract The ubiquitous adoption of mobile devices as essential platforms for sensitive data transmission has heightened the demand for secure client-server communication. Although various authentication and key agreement protocols have been developed, current approaches are constrained by homogeneous cryptosystem frameworks, namely public key infrastructure (PKI), identity-based cryptography (IBC), or certificateless cryptography (CLC), each presenting limitations in client-server architectures. Specifically, PKI incurs certificate management overhead, IBC introduces key escrow risks, and CLC encounters cross-system interoperability challenges. To overcome these shortcomings, this study introduces a heterogeneous signcryption-based authentication and key agreement protocol that synergistically integrates IBC for client More >

Displaying 1-10 on page 1 of 1008. Per Page