Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (408)
  • Open Access

    ARTICLE

    UltraSegNet: A Hybrid Deep Learning Framework for Enhanced Breast Cancer Segmentation and Classification on Ultrasound Images

    Suhaila Abuowaida1,*, Hamza Abu Owida2, Deema Mohammed Alsekait3,*, Nawaf Alshdaifat4, Diaa Salama AbdElminaam5,6, Mohammad Alshinwan4

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3303-3333, 2025, DOI:10.32604/cmc.2025.063470 - 16 April 2025

    Abstract Segmenting a breast ultrasound image is still challenging due to the presence of speckle noise, dependency on the operator, and the variation of image quality. This paper presents the UltraSegNet architecture that addresses these challenges through three key technical innovations: This work adds three things: (1) a changed ResNet-50 backbone with sequential 3 convolutions to keep fine anatomical details that are needed for finding lesion boundaries; (2) a computationally efficient regional attention mechanism that works on high-resolution features without using a transformer’s extra memory; and (3) an adaptive feature fusion strategy that changes local and… More >

  • Open Access

    ARTICLE

    Two-Stage Category-Guided Frequency Modulation for Few-Shot Semantic Segmentation

    Yiming Tang*, Yanqiu Chen

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 1707-1726, 2025, DOI:10.32604/cmc.2025.062412 - 16 April 2025

    Abstract Semantic segmentation of novel object categories with limited labeled data remains a challenging problem in computer vision. Few-shot segmentation methods aim to address this problem by recognizing objects from specific target classes with a few provided examples. Previous approaches for few-shot semantic segmentation typically represent target classes using class prototypes. These prototypes are matched with the features of the query set to get segmentation results. However, class prototypes are usually obtained by applying global average pooling on masked support images. Global pooling discards much structural information, which may reduce the accuracy of model predictions. To… More >

  • Open Access

    ARTICLE

    Entropy-Bottleneck-Based Privacy Protection Mechanism for Semantic Communication

    Kaiyang Han1, Xiaoqiang Jia1, Yangfei Lin2, Tsutomu Yoshinaga2, Yalong Li2, Jiale Wu2,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2971-2988, 2025, DOI:10.32604/cmc.2025.061563 - 16 April 2025

    Abstract With the rapid development of artificial intelligence and the Internet of Things, along with the growing demand for privacy-preserving transmission, the need for efficient and secure communication systems has become increasingly urgent. Traditional communication methods transmit data at the bit level without considering its semantic significance, leading to redundant transmission overhead and reduced efficiency. Semantic communication addresses this issue by extracting and transmitting only the most meaningful semantic information, thereby improving bandwidth efficiency. However, despite reducing the volume of data, it remains vulnerable to privacy risks, as semantic features may still expose sensitive information. To… More >

  • Open Access

    ARTICLE

    Automatic Pancreas Segmentation in CT Images Using EfficientNetV2 and Multi-Branch Structure

    Panru Liang1, Guojiang Xin1,*, Xiaolei Yi2, Hao Liang3, Changsong Ding1

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2481-2504, 2025, DOI:10.32604/cmc.2025.060961 - 16 April 2025

    Abstract Automatic pancreas segmentation plays a pivotal role in assisting physicians with diagnosing pancreatic diseases, facilitating treatment evaluations, and designing surgical plans. Due to the pancreas’s tiny size, significant variability in shape and location, and low contrast with surrounding tissues, achieving high segmentation accuracy remains challenging. To improve segmentation precision, we propose a novel network utilizing EfficientNetV2 and multi-branch structures for automatically segmenting the pancreas from CT images. Firstly, an EfficientNetV2 encoder is employed to extract complex and multi-level features, enhancing the model’s ability to capture the pancreas’s intricate morphology. Then, a residual multi-branch dilated attention… More >

  • Open Access

    ARTICLE

    CG-FCLNet: Category-Guided Feature Collaborative Learning Network for Semantic Segmentation of Remote Sensing Images

    Min Yao1,*, Guangjie Hu1, Yaozu Zhang2

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2751-2771, 2025, DOI:10.32604/cmc.2025.060860 - 16 April 2025

    Abstract Semantic segmentation of remote sensing images is a critical research area in the field of remote sensing. Despite the success of Convolutional Neural Networks (CNNs), they often fail to capture inter-layer feature relationships and fully leverage contextual information, leading to the loss of important details. Additionally, due to significant intra-class variation and small inter-class differences in remote sensing images, CNNs may experience class confusion. To address these issues, we propose a novel Category-Guided Feature Collaborative Learning Network (CG-FCLNet), which enables fine-grained feature extraction and adaptive fusion. Specifically, we design a Feature Collaborative Learning Module (FCLM)… More >

  • Open Access

    ARTICLE

    A Nature-Inspired AI Framework for Accurate Glaucoma Diagnosis

    Jahanzaib Latif 1, Ahsan Wajahat1, Alishba Tahir2, Anas Bilal3,*, Mohammed Zakariah4, Abeer Alnuaim4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 539-567, 2025, DOI:10.32604/cmes.2025.062301 - 11 April 2025

    Abstract Glaucoma, a leading cause of blindness, demands early detection for effective management. While AI-based diagnostic systems are gaining traction, their performance is often limited by challenges such as varying image backgrounds, pixel intensity inconsistencies, and object size variations. To address these limitations, we introduce an innovative, nature-inspired machine learning framework combining feature excitation-based dense segmentation networks (FEDS-Net) and an enhanced gray wolf optimization-supported support vector machine (IGWO-SVM). This dual-stage approach begins with FEDS-Net, which utilizes a fuzzy integral (FI) technique to accurately segment the optic cup (OC) and optic disk (OD) from retinal images, even More >

  • Open Access

    ARTICLE

    Advanced Computational Modeling for Brain Tumor Detection: Enhancing Segmentation Accuracy Using ICA-I and ICA-II Techniques

    Abdullah A. Asiri1, Toufique A. Soomro2,3,*, Ahmed Ali4, Faisal Bin Ubaid5, Muhammad Irfan6,*, Khlood M. Mehdar7, Magbool Alelyani8, Mohammed S. Alshuhri9, Ahmad Joman Alghamdi10, Sultan Alamri10

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 255-287, 2025, DOI:10.32604/cmes.2025.061683 - 11 April 2025

    Abstract Global mortality rates are greatly impacted by malignancies of the brain and nervous system. Although, Magnetic Resonance Imaging (MRI) plays a pivotal role in detecting brain tumors; however, manual assessment is time-consuming and susceptible to human error. To address this, we introduce ICA2-SVM, an advanced computational framework integrating Independent Component Analysis Architecture-2 (ICA2) and Support Vector Machine (SVM) for automated tumor segmentation and classification. ICA2 is utilized for image preprocessing and optimization, enhancing MRI consistency and contrast. The Fast-Marching Method (FMM) is employed to delineate tumor regions, followed by SVM for precise classification. Validation on More >

  • Open Access

    ARTICLE

    MLRT-UNet: An Efficient Multi-Level Relation Transformer Based U-Net for Thyroid Nodule Segmentation

    Kaku Haribabu1,*, Prasath R1, Praveen Joe IR2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 413-448, 2025, DOI:10.32604/cmes.2025.059406 - 11 April 2025

    Abstract Thyroid nodules, a common disorder in the endocrine system, require accurate segmentation in ultrasound images for effective diagnosis and treatment. However, achieving precise segmentation remains a challenge due to various factors, including scattering noise, low contrast, and limited resolution in ultrasound images. Although existing segmentation models have made progress, they still suffer from several limitations, such as high error rates, low generalizability, overfitting, limited feature learning capability, etc. To address these challenges, this paper proposes a Multi-level Relation Transformer-based U-Net (MLRT-UNet) to improve thyroid nodule segmentation. The MLRT-UNet leverages a novel Relation Transformer, which processes… More >

  • Open Access

    ARTICLE

    MVLA-Net: A Multi-View Lesion Attention Network for Advanced Diagnosis and Grading of Diabetic Retinopathy

    Tariq Mahmood1,2, Tanzila Saba1, Faten S. Alamri3,*, Alishba Tahir4, Noor Ayesha5

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1173-1193, 2025, DOI:10.32604/cmc.2025.061150 - 26 March 2025

    Abstract Innovation in learning algorithms has made retinal vessel segmentation and automatic grading techniques crucial for clinical diagnosis and prevention of diabetic retinopathy. The traditional methods struggle with accuracy and reliability due to multi-scale variations in retinal blood vessels and the complex pathological relationship in fundus images associated with diabetic retinopathy. While the single-modal diabetic retinopathy grading network addresses class imbalance challenges and lesion representation in fundus image data, dual-modal diabetic retinopathy grading methods offer superior performance. However, the scarcity of dual-modal data and the lack of effective feature fusion methods limit their potential due to… More >

  • Open Access

    ARTICLE

    An Efficient Instance Segmentation Based on Layer Aggregation and Lightweight Convolution

    Hui Jin1,2,*, Shuaiqi Xu1, Chengyi Duan1, Ruixue He1, Ji Zhang1

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1041-1055, 2025, DOI:10.32604/cmc.2025.060304 - 26 March 2025

    Abstract Instance segmentation is crucial in various domains, such as autonomous driving and robotics. However, there is scope for improvement in the detection speed of instance-segmentation algorithms for edge devices. Therefore, it is essential to enhance detection speed while maintaining high accuracy. In this study, we propose you only look once-layer fusion (YOLO-LF), a lightweight instance segmentation method specifically designed to optimize the speed of instance segmentation for autonomous driving applications. Based on the You Only Look Once version 8 nano (YOLOv8n) framework, we introduce a lightweight convolutional module and design a lightweight layer aggregation module… More >

Displaying 1-10 on page 1 of 408. Per Page