Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (400)
  • Open Access

    ARTICLE

    KD-SegNet: Efficient Semantic Segmentation Network with Knowledge Distillation Based on Monocular Camera

    Thai-Viet Dang1,*, Nhu-Nghia Bui1, Phan Xuan Tan2,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2001-2026, 2025, DOI:10.32604/cmc.2025.060605 - 17 February 2025

    Abstract Due to the necessity for lightweight and efficient network models, deploying semantic segmentation models on mobile robots (MRs) is a formidable task. The fundamental limitation of the problem lies in the training performance, the ability to effectively exploit the dataset, and the ability to adapt to complex environments when deploying the model. By utilizing the knowledge distillation techniques, the article strives to overcome the above challenges with the inheritance of the advantages of both the teacher model and the student model. More precisely, the ResNet152-PSP-Net model’s characteristics are utilized to train the ResNet18-PSP-Net model. Pyramid… More >

  • Open Access

    REVIEW

    Zero Trust Networks: Evolution and Application from Concept to Practice

    Yongjun Ren1, Zhiming Wang1, Pradip Kumar Sharma2, Fayez Alqahtani3, Amr Tolba4, Jin Wang5,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1593-1613, 2025, DOI:10.32604/cmc.2025.059170 - 17 February 2025

    Abstract In the context of an increasingly severe cybersecurity landscape and the growing complexity of offensive and defensive techniques, Zero Trust Networks (ZTN) have emerged as a widely recognized technology. Zero Trust not only addresses the shortcomings of traditional perimeter security models but also consistently follows the fundamental principle of “never trust, always verify.” Initially proposed by John Cortez in 2010 and subsequently promoted by Google, the Zero Trust model has become a key approach to addressing the ever-growing security threats in complex network environments. This paper systematically compares the current mainstream cybersecurity models, thoroughly explores More >

  • Open Access

    ARTICLE

    Vector Extraction from Design Drawings for Intelligent 3D Modeling of Transmission Towers

    Ziqiang Tang1, Chao Han1, Hongwu Li1, Zhou Fan1, Ke Sun1, Yuntian Huang1, Yuhang Chen2, Chenxing Wang2,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2813-2829, 2025, DOI:10.32604/cmc.2024.059094 - 17 February 2025

    Abstract Accurate vector extraction from design drawings is required first to automatically create 3D models from pixel-level engineering design drawings. However, this task faces the challenges of complicated design shapes as well as cumbersome and cluttered annotations on drawings, which interfere with the vector extraction heavily. In this article, the transmission tower containing the most complex structure is taken as the research object, and a semantic segmentation network is constructed to first segment the shape masks from the pixel-level drawings. Preprocessing and postprocessing are also proposed to ensure the stability and accuracy of the shape mask… More >

  • Open Access

    ARTICLE

    MG-SLAM: RGB-D SLAM Based on Semantic Segmentation for Dynamic Environment in the Internet of Vehicles

    Fengju Zhang1, Kai Zhu2,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2353-2372, 2025, DOI:10.32604/cmc.2024.058944 - 17 February 2025

    Abstract The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2,… More >

  • Open Access

    ARTICLE

    Research on Multimodal Brain Tumor Segmentation Algorithm Based on Feature Decoupling and Information Bottleneck Theory

    Xuemei Yang1, Yuting Zhou2, Shiqi Liu1, Junping Yin2,3,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3281-3307, 2025, DOI:10.32604/cmc.2024.057991 - 17 February 2025

    Abstract Aiming at the problems of information loss and the relationship between features and target tasks in multimodal medical image segmentation, a multimodal medical image segmentation algorithm based on feature decoupling and information bottleneck theory is proposed in this paper. Based on the reversible network, the bottom-up learning method for different modal information is constructed, which enhances the features’ expression ability and the network’s learning ability. The feature fusion module is designed to balance multi-directional information flow. To retain the information relevant to the target task to the maximum extent and suppress the information irrelevant to… More >

  • Open Access

    REVIEW

    Deep Learning and Artificial Intelligence-Driven Advanced Methods for Acute Lymphoblastic Leukemia Identification and Classification: A Systematic Review

    Syed Ijaz Ur Rahman1, Naveed Abbas1, Sikandar Ali2, Muhammad Salman1, Ahmed Alkhayat3, Jawad Khan4,*, Dildar Hussain5, Yeong Hyeon Gu5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1199-1231, 2025, DOI:10.32604/cmes.2025.057462 - 27 January 2025

    Abstract Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system. Analysis of white blood cells (WBCs) in the blood or bone marrow microscopic slide images play a crucial part in early identification to facilitate medical experts. For Acute Lymphocytic Leukemia (ALL), the most preferred part of the blood or marrow is to be analyzed by the experts before it spreads in the whole body and the condition becomes worse. The researchers have done a lot of work in this field, to demonstrate… More >

  • Open Access

    ARTICLE

    3D Reconstruction for Early Detection of Liver Cancer

    Rana Mohamed1,2,*, Mostafa Elgendy1, Mohamed Taha1

    Computer Systems Science and Engineering, Vol.49, pp. 213-238, 2025, DOI:10.32604/csse.2024.059491 - 10 January 2025

    Abstract Globally, liver cancer ranks as the sixth most frequent malignancy cancer. The importance of early detection is undeniable, as liver cancer is the fifth most common disease in men and the ninth most common cancer in women. Recent advances in imaging, biomarker discovery, and genetic profiling have greatly enhanced the ability to diagnose liver cancer. Early identification is vital since liver cancer is often asymptomatic, making diagnosis difficult. Imaging techniques such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and ultrasonography can be used to identify liver cancer once a sample of liver tissue is… More >

  • Open Access

    ARTICLE

    A Lightweight Multiscale Feature Fusion Network for Solar Cell Defect Detection

    Xiaoyun Chen1, Lanyao Zhang1, Xiaoling Chen1, Yigang Cen2, Linna Zhang1,*, Fugui Zhang1

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 521-542, 2025, DOI:10.32604/cmc.2024.058063 - 03 January 2025

    Abstract Solar cell defect detection is crucial for quality inspection in photovoltaic power generation modules. In the production process, defect samples occur infrequently and exhibit random shapes and sizes, which makes it challenging to collect defective samples. Additionally, the complex surface background of polysilicon cell wafers complicates the accurate identification and localization of defective regions. This paper proposes a novel Lightweight Multi-scale Feature Fusion network (LMFF) to address these challenges. The network comprises a feature extraction network, a multi-scale feature fusion module (MFF), and a segmentation network. Specifically, a feature extraction network is proposed to obtain… More >

  • Open Access

    ARTICLE

    A Hybrid Approach for Pavement Crack Detection Using Mask R-CNN and Vision Transformer Model

    Shorouq Alshawabkeh, Li Wu*, Daojun Dong, Yao Cheng, Liping Li

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 561-577, 2025, DOI:10.32604/cmc.2024.057213 - 03 January 2025

    Abstract Detecting pavement cracks is critical for road safety and infrastructure management. Traditional methods, relying on manual inspection and basic image processing, are time-consuming and prone to errors. Recent deep-learning (DL) methods automate crack detection, but many still struggle with variable crack patterns and environmental conditions. This study aims to address these limitations by introducing the MaskerTransformer, a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network (Mask R-CNN) with the global contextual awareness of Vision Transformer (ViT). The research focuses on leveraging the strengths of both architectures… More >

  • Open Access

    ARTICLE

    Stochastic Augmented-Based Dual-Teaching for Semi-Supervised Medical Image Segmentation

    Hengyang Liu1, Yang Yuan1,*, Pengcheng Ren1, Chengyun Song1, Fen Luo2

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 543-560, 2025, DOI:10.32604/cmc.2024.056478 - 03 January 2025

    Abstract Existing semi-supervised medical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch. However, current copy-paste methods have three limitations: (1) training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information; (2) low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data; (3) the segmentation performance in low-contrast and local regions is less than optimal. We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy (SADT), which enhances feature diversity and learns high-quality features to overcome these problems. To be more… More >

Displaying 11-20 on page 2 of 400. Per Page