Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access

    ARTICLE

    Sensor Concept Based on Piezoelectric PVDF Films for the Structural Health Monitoring of Fatigue Crack Growth

    Dennis Bäcker1, Andreas Ricoeur2, Meinhard Kuna1

    Structural Durability & Health Monitoring, Vol.7, No.1&2, pp. 1-22, 2011, DOI:10.3970/sdhm.2011.007.001

    Abstract A new sensor concept for monitoring fatigue crack growth in technical structures is presented. It allows the in-situ determination of the position of the crack tip as well as the fracture mechanical quantities. The required data are obtained from a piezoelectric polymer film, which is attached to the surface of the monitored structure. The stress intensity factors and the crack tip position are calculated from electrical potentials obtained from a sensor array by solving the non-linear inverse problem. More >

  • Open Access

    ARTICLE

    Electromechanical Impedance Method for the Health Monitoring of Bonded Joints: Numerical Modelling and Experimental Validation

    Vincenzo Gulizzi1,2, Piervincenzo Rizzo2,3, Alberto Milazzo4

    Structural Durability & Health Monitoring, Vol.10, No.1, pp. 19-54, 2014, DOI:10.3970/sdhm.2014.010.019

    Abstract The electromechanical impedance (EMI) method is one of the many nondestructive evaluation approaches proposed for the health monitoring of aerospace, civil, and mechanical structures. The method consists of attaching or embedding one or more wafer-type piezoelectric transducers (PZTs) to the system of interest, the host structure, and measuring certain electrical characteristics of the transducers. As these characteristics are also related to the impedance of the host structure, they can be used to infer the mechanical properties of the monitored structure. In the study presented in this paper, we utilize the EMI to monitor the quality of adhesively bonded joints. A… More >

  • Open Access

    ARTICLE

    Structure Health Monitoring (SHM) System Trade Space Analysis

    Salman A. Albinali1, David R. Jacques2

    Structural Durability & Health Monitoring, Vol.10, No.1, pp. 1-17, 2014, DOI:10.3970/sdhm.2014.010.001

    Abstract An analytic approach to exploring the tradespace associated with Structural Health Monitoring (SHM) systems is presented. Modeling and simulation of the life cycle of a legacy aircraft and the expected operational and maintenance events that could occur is shown. A focus on the SHM system detection of a significant crack length and the possibility of False Alarm (FA), miss detection and mishap events is investigated. The modeling approach allows researchers to explore the tradespace associated with safe and critical crack lengths, sensor thresholds, scheduled maintenance intervals, falsely triggered maintenance actions, and mishaps due to missed detections. As one might expect,… More >

  • Open Access

    ARTICLE

    Optimal Sensor Placement for Structural, Damage and Impact Identification: A Review

    V. Mallardo1,2, M.H. Aliabadi3

    Structural Durability & Health Monitoring, Vol.9, No.4, pp. 287-323, 2013, DOI:10.32604/sdhm.2013.009.287

    Abstract The optimum location of the sensors is a critical issue of any successful Structural Health Monitoring System. Sensor optimization problems encompass mainly three areas of interest: system identification, damage identification and impact identification. The current paper is intended as a review of the state of the art at the year 2012 and going back to 1990. The above topics have been dealt with in separate contexts so far but they contain interesting common elements to be exploited. More >

  • Open Access

    ARTICLE

    Structural Health Monitoring of Concrete Bridges in Guilan Province Based on a Visual Inspection Method

    Mehdi Mohammadpour Lima1,2, Dane Miller1, Jeung-Hwan Doh1

    Structural Durability & Health Monitoring, Vol.9, No.4, pp. 269-285, 2013, DOI:10.32604/sdhm.2013.009.269

    Abstract Iran is located in a seismic prone region with several earthquakes occurring annually causing extensive damage to structures and infrastructure. Guilan province is located in the northern part of the country, exhibiting a large population, moderate climate and extensive river system. This region experiences high humidity, several active faults and high seismic hazard potential. This highlights the importance of an active and extensive maintenance and rehabilitation program for the bridges in this region. Structural Health Monitoring (SHM) is an engineering tool used to control changing conditions of infrastructure providing useful information for management, decision making and in certain circumstances code… More >

  • Open Access

    ARTICLE

    Damage Extension Diagnosis Method for Typical Structures of Composite Aircraft Based on Lamb Waves

    Dongyue Gao1, Yishou Wang1, Zhanjun Wu1, Rahim Gorgin1

    Structural Durability & Health Monitoring, Vol.9, No.3, pp. 233-252, 2013, DOI:10.32604/sdhm.2013.009.233

    Abstract In this study, a Lamb wave-based damage extension diagnosis method to monitor the damage on typical structures of composite aircraft is proposed. First, an overview of the damage extension diagnosis method is given. In the method, probability-based damage diagnostic imaging was combined with empirical threshold value to distinguish damage location and estimate damage size in damage extension process. To validate the effectiveness of method, extension diagnosis of simulate delamination damage in typical structure on aircraft were processed. To illustrate the capability of the damage extension diagnostic method, a delamination growth monitoring experiment was performed in a typical reinforce component (Tjoint… More >

  • Open Access

    ARTICLE

    Sensor Fault Detection in Large Sensor Networks using PCA with a Multi-level Search Algorithm

    A. Rama Mohan Rao1, S. Krishna Kumar1, K. Lakshmi1

    Structural Durability & Health Monitoring, Vol.8, No.3, pp. 271-294, 2012, DOI:10.32604/sdhm.2012.008.271

    Abstract Current advancements in structural health monitoring, sensor and sensor network technologies have encouraged using large number of sensor networks in monitoring spatially large civil structures like bridges. Large amount of spatial information obtained from these sensor networks will enhance the reliability in truly assessing the state of the health of the structure. However, if sensors go faulty during operation, the feature extraction techniques embedded into SHM scheme may lead to an erroneous conclusion and often end up with false alarms. Hence it is highly desirable to robustly detect the faulty sensors, isolate and correct the data, if the data at… More >

  • Open Access

    ARTICLE

    Structures with Surface-Bonded PZT Piezoelectric Patches: a BEM Investigation into the Strain-transfer Mechanism for SHM applications

    I. Benedetti1, A. Milazzo1, M.H. Aliabadi2

    Structural Durability & Health Monitoring, Vol.5, No.3, pp. 251-274, 2009, DOI:10.3970/sdhm.2009.005.251

    Abstract In this work a three-dimensional BEM model is used for the analysis of structures with cracks and surface bonded piezoelectric PZT patches used as strain sensors. The cracked structure is modelled by the dual boundary element method, which allows for accurate and reliable crack analysis, while the piezoelectric patch is analyzed by a finite element state-space approach, that embodies both the full electro-mechanical coupling and the suitable sensor's boundary conditions. The model is used to investigate the strain-transfer mechanism from an host elastic structure to the piezoelectric layer, taking into account the effect of the adhesive layer, as well as… More >

  • Open Access

    ARTICLE

    Unsupervised Time-series Fatigue Damage State Estimation of Complex Structure Using Ultrasound Based Narrowband and Broadband Active Sensing

    S.Mohanty1, A. Chattopadhyay2, J. Wei3, P. Peralta4

    Structural Durability & Health Monitoring, Vol.5, No.3, pp. 227-250, 2009, DOI:10.3970/sdhm.2009.005.227

    Abstract This paper proposes unsupervised system identification based methods to estimate time-series fatigue damage states in real-time. Ultrasound broadband input is used for active damage interrogation. Novel damage index estimation techniques based on dual sensor signals are proposed. The dual sensor configuration is used to remove electrical noise, as well as to improve spatial resolution in damage state estimation. The scalar damage index at any particular damage condition is evaluated using nonparametric system identification techniques, which includes an empirical transfer function estimation approach and a correlation analysis approach. In addition, the effectiveness of two sensor configurations (configuration 1: sensors placed near… More >

  • Open Access

    ARTICLE

    Real Time Damage State Estimation and Condition Based Residual Useful Life Estimation of a Metallic Specimen under Biaxial Loading

    S.Mohanty1, A. Chattopadhyay2, J. Wei3, P. Peralta4

    Structural Durability & Health Monitoring, Vol.5, No.1, pp. 33-56, 2009, DOI:10.3970/sdhm.2009.005.033

    Abstract The current state of the art in the area of real time structural health monitoring techniques offers adaptive damage state prediction and residual useful life assessment. The present paper discusses the use of an integrated prognosis model, which combines an on-line state estimation model with an off-line predictive model to adaptively estimate the residual useful life of an Al-6061 cruciform specimen under biaxial loading. The overall fatigue process is assumed to be a slow time scale process compared to the time scale at which, the sensor signals were acquired for on-line state estimation. The on-line state estimation model was based… More >

Displaying 21-30 on page 3 of 46. Per Page