Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access


    A Hybrid FEM/BEM Approach for Designing an Aircraft Engine Structural Health Monitoring

    S.C. Forth1, A. Staroselsky2

    CMES-Computer Modeling in Engineering & Sciences, Vol.9, No.3, pp. 287-298, 2005, DOI:10.3970/cmes.2005.009.287

    Abstract A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating, and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack and external surface. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus, when More >

  • Open Access


    Crack Detection and Localization on Wind Turbine Blade Using Machine Learning Algorithms: A Data Mining Approach

    A. Joshuva1, V. Sugumaran2

    Structural Durability & Health Monitoring, Vol.13, No.2, pp. 181-203, 2019, DOI:10.32604/sdhm.2019.00287

    Abstract Wind turbine blades are generally manufactured using fiber type material because of their cost effectiveness and light weight property however, blade get damaged due to wind gusts, bad weather conditions, unpredictable aerodynamic forces, lightning strikes and gravitational loads which causes crack on the surface of wind turbine blade. It is very much essential to identify the damage on blade before it crashes catastrophically which might possibly destroy the complete wind turbine. In this paper, a fifteen tree classification based machine learning algorithms were modelled for identifying and detecting the crack on wind turbine blades. The More >

  • Open Access


    Delamination Identification for FRP Composites with Emphasis on Frequency-Based Vibration Monitoring-A Review

    Mengyue He1, Zhifang Zhang1,*, Karthik Ram Ramakrishnan2

    Structural Durability & Health Monitoring, Vol.12, No.4, pp. 213-256, 2018, DOI:10.32604/sdhm.2018.05122

    Abstract Fibre reinforced polymer (FRP) composite laminates are now commonly used in many structural applications, especially in the aerospace industry, where margins of safety are kept low in order to minimise weight. Timely detection and assessment of damage (in particular delaminations) in composite laminates are therefore critical, as they can cause loss of structural integrity affecting the safe operation of the composite structures. The current trend is towards implementation of structural health monitoring (SHM) systems which can monitor the structures in situ without down time. In this paper, first, the current available SHM techniques for delamination… More >

  • Open Access


    Time Series Analysis for Vibration-Based Structural Health Monitoring: A Review

    Kong Fah Tee 1,*

    Structural Durability & Health Monitoring, Vol.12, No.3, pp. 129-147, 2018, DOI: 10.3970/sdhm.2018.04316

    Abstract Structural health monitoring (SHM) is a vast, interdisciplinary research field whose literature spans several decades with focusing on condition assessment of different types of structures including aerospace, mechanical and civil structures. The need for quantitative global damage detection methods that can be applied to complex structures has led to vibration-based inspection. Statistical time series methods for SHM form an important and rapidly evolving category within the broader vibration-based methods. In the literature on the structural damage detection, many time series-based methods have been proposed. When a considered time series model approximates the vibration response of… More >

  • Open Access


    Estimation of Deformed Shapes of Beam Structures using 3D Coordinate Information from Terrestrial Laser Scanning

    H.M. Lee1, H.S. Park1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.29, No.1, pp. 29-44, 2008, DOI:10.3970/cmes.2008.029.029

    Abstract This paper presents a computational model to estimate deformed shapes of beam structures using 3D coordinate information from terrestrial laser scanning (TLS). The model is composed of five components: 1) formulation of polynomial shape function, 2) application of boundary condition, 3) inducement of compatibility condition, 4) application of the least square method and 5) evaluation of error vector and determination of reasonable polynomial shape function. In the proposed model, the optimal degree of polynomial function is selected based on the complexity of beam structures, instead of using a specific degree of polynomial function. The chosen More >

  • Open Access


    Research on the Signal Reconstruction of the Phased Array Structural Health Monitoring Based Using the Basis Pursuit Algorithm

    Yajie Sun1,2,*, Yanqing Yuan2, Qi Wang2, Lihua Wang3, Enlu Li2, Li Qiao4

    CMC-Computers, Materials & Continua, Vol.58, No.2, pp. 409-420, 2019, DOI:10.32604/cmc.2019.03642

    Abstract The signal processing problem has become increasingly complex and demand high acquisition system, this paper proposes a new method to reconstruct the structure phased array structural health monitoring signal. The method is derived from the compressive sensing theory and the signal is reconstructed by using the basis pursuit algorithm to process the ultrasonic phased array signals. According to the principles of the compressive sensing and signal processing method, non-sparse ultrasonic signals are converted to sparse signals by using sparse transform. The sparse coefficients are obtained by sparse decomposition of the original signal, and then the More >

Displaying 41-50 on page 5 of 46. Per Page