Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,414)
  • Open Access

    ARTICLE

    A Barrier-Based Machine Learning Approach for Intrusion Detection in Wireless Sensor Networks

    Haydar Abdulameer Marhoon1,2,*, Rafid Sagban3,4, Atheer Y. Oudah1,5, Saadaldeen Rashid Ahmed6,7

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4181-4218, 2025, DOI:10.32604/cmc.2025.058822 - 06 March 2025

    Abstract In order to address the critical security challenges inherent to Wireless Sensor Networks (WSNs), this paper presents a groundbreaking barrier-based machine learning technique. Vital applications like military operations, healthcare monitoring, and environmental surveillance increasingly deploy WSNs, recognizing the critical importance of effective intrusion detection in protecting sensitive data and maintaining operational integrity. The proposed method innovatively partitions the network into logical segments or virtual barriers, allowing for targeted monitoring and data collection that aligns with specific traffic patterns. This approach not only improves the diversit. There are more types of data in the training set,… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Fingerprint Recognition via Federated Adaptive Domain Generalization

    Yonghang Yan1, Xin Xie1, Hengyi Ren2, Ying Cao1,*, Hongwei Chang3

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5035-5055, 2025, DOI:10.32604/cmc.2025.058276 - 06 March 2025

    Abstract Fingerprint features, as unique and stable biometric identifiers, are crucial for identity verification. However, traditional centralized methods of processing these sensitive data linked to personal identity pose significant privacy risks, potentially leading to user data leakage. Federated Learning allows multiple clients to collaboratively train and optimize models without sharing raw data, effectively addressing privacy and security concerns. However, variations in fingerprint data due to factors such as region, ethnicity, sensor quality, and environmental conditions result in significant heterogeneity across clients. This heterogeneity adversely impacts the generalization ability of the global model, limiting its performance across… More >

  • Open Access

    ARTICLE

    Image Copy-Move Forgery Detection and Localization Method Based on Sequence-to-Sequence Transformer Structure

    Gang Hao, Peng Liang*, Ziyuan Li, Huimin Zhao, Hong Zhang

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5221-5238, 2025, DOI:10.32604/cmc.2025.055739 - 06 March 2025

    Abstract In recent years, the detection of image copy-move forgery (CMFD) has become a critical challenge in verifying the authenticity of digital images, particularly as image manipulation techniques evolve rapidly. While deep convolutional neural networks (DCNNs) have been widely employed for CMFD tasks, they are often hindered by a notable limitation: the progressive reduction in spatial resolution during the encoding process, which leads to the loss of critical image details. These details are essential for the accurate detection and localization of image copy-move forgery. To overcome the limitations of existing methods, this paper proposes a Transformer-based… More >

  • Open Access

    ARTICLE

    Prioritizing Network-On-Chip Routers for Countermeasure Techniques against Flooding Denial-of-Service Attacks: A Fuzzy Multi-Criteria Decision-Making Approach

    Ahmed Abbas Jasim Al-Hchaimi1, Yousif Raad Muhsen2,3,*, Wisam Hazim Gwad4, Entisar Soliman Alkayal5, Riyadh Rahef Nuiaa Al Ogaili6, Zaid Abdi Alkareem Alyasseri7,8, Alhamzah Alnoor9

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2661-2689, 2025, DOI:10.32604/cmes.2025.061318 - 03 March 2025

    Abstract The implementation of Countermeasure Techniques (CTs) in the context of Network-On-Chip (NoC) based Multiprocessor System-On-Chip (MPSoC) routers against the Flooding Denial-of-Service Attack (F-DoSA) falls under Multi-Criteria Decision-Making (MCDM) due to the three main concerns, called: traffic variations, multiple evaluation criteria-based traffic features, and prioritization NoC routers as an alternative. In this study, we propose a comprehensive evaluation of various NoC traffic features to identify the most efficient routers under the F-DoSA scenarios. Consequently, an MCDM approach is essential to address these emerging challenges. While the recent MCDM approach has some issues, such as uncertainty, this… More >

  • Open Access

    ARTICLE

    Enhancing Safety in Electric Vehicles: Multi-Tiered Fault Detection for Micro Short Circuits and Aging in Battery Modules

    Yi-Feng Luo1,*, Jyuan-Fong Yen2, Wen-Cheng Su3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3069-3087, 2025, DOI:10.32604/cmes.2025.061180 - 03 March 2025

    Abstract This article proposes a multi-tiered fault detection system for series-connected lithium-ion battery modules. Improper use of batteries can lead to electrolyte decomposition, resulting in the formation of lithium dendrites. These dendrites may pierce the separator, leading to the failure of the insulation layer between electrodes and causing micro short circuits. When a micro short circuit occurs, the electrolyte typically undergoes exothermic reactions, leading to thermal runaway and posing a safety risk to users. Relying solely on temperature-based judgment mechanisms within the battery management system often results in delayed intervention. To address this issue, the article More >

  • Open Access

    ARTICLE

    Improving Fundus Detection Precision in Diabetic Retinopathy Using Derivative-Based Deep Neural Networks

    Asma Aldrees1, Hong Min2,*, Ashit Kumar Dutta3, Yousef Ibrahim Daradkeh4, Mohd Anjum5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2487-2511, 2025, DOI:10.32604/cmes.2025.061103 - 03 March 2025

    Abstract Fundoscopic diagnosis involves assessing the proper functioning of the eye’s nerves, blood vessels, retinal health, and the impact of diabetes on the optic nerves. Fundus disorders are a major global health concern, affecting millions of people worldwide due to their widespread occurrence. Fundus photography generates machine-based eye images that assist in diagnosing and treating ocular diseases such as diabetic retinopathy. As a result, accurate fundus detection is essential for early diagnosis and effective treatment, helping to prevent severe complications and improve patient outcomes. To address this need, this article introduces a Derivative Model for Fundus… More >

  • Open Access

    ARTICLE

    Semantic Malware Classification Using Artificial Intelligence Techniques

    Eliel Martins1, Javier Bermejo Higuera2,*, Ricardo Sant’Ana1, Juan Ramón Bermejo Higuera2, Juan Antonio Sicilia Montalvo2, Diego Piedrahita Castillo3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3031-3067, 2025, DOI:10.32604/cmes.2025.061080 - 03 March 2025

    Abstract The growing threat of malware, particularly in the Portable Executable (PE) format, demands more effective methods for detection and classification. Machine learning-based approaches exhibit their potential but often neglect semantic segmentation of malware files that can improve classification performance. This research applies deep learning to malware detection, using Convolutional Neural Network (CNN) architectures adapted to work with semantically extracted data to classify malware into malware families. Starting from the Malconv model, this study introduces modifications to adapt it to multi-classification tasks and improve its performance. It proposes a new innovative method that focuses on byte More >

  • Open Access

    ARTICLE

    A Secured and Continuously Developing Methodology for Breast Cancer Image Segmentation via U-Net Based Architecture and Distributed Data Training

    Rifat Sarker Aoyon1, Ismail Hossain2, M. Abdullah-Al-Wadud3, Jia Uddin4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2617-2640, 2025, DOI:10.32604/cmes.2025.060917 - 03 March 2025

    Abstract This research introduces a unique approach to segmenting breast cancer images using a U-Net-based architecture. However, the computational demand for image processing is very high. Therefore, we have conducted this research to build a system that enables image segmentation training with low-power machines. To accomplish this, all data are divided into several segments, each being trained separately. In the case of prediction, the initial output is predicted from each trained model for an input, where the ultimate output is selected based on the pixel-wise majority voting of the expected outputs, which also ensures data privacy.… More >

  • Open Access

    ARTICLE

    Deep Learning and Machine Learning Architectures for Dementia Detection from Speech in Women

    Ahlem Walha1, Amel Ksibi2,*, Mohammed Zakariah3,*, Manel Ayadi2, Tagrid Alshalali2, Oumaima Saidani2, Leila Jamel2, Nouf Abdullah Almujally2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2959-3001, 2025, DOI:10.32604/cmes.2025.060545 - 03 March 2025

    Abstract Dementia is a neurological disorder that affects the brain and its functioning, and women experience its effects more than men do. Preventive care often requires non-invasive and rapid tests, yet conventional diagnostic techniques are time-consuming and invasive. One of the most effective ways to diagnose dementia is by analyzing a patient’s speech, which is cheap and does not require surgery. This research aims to determine the effectiveness of deep learning (DL) and machine learning (ML) structures in diagnosing dementia based on women’s speech patterns. The study analyzes data drawn from the Pitt Corpus, which contains… More >

  • Open Access

    ARTICLE

    ParMamba: A Parallel Architecture Using CNN and Mamba for Brain Tumor Classification

    Gaoshuai Su1,2, Hongyang Li1,*, Huafeng Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2527-2545, 2025, DOI:10.32604/cmes.2025.059452 - 03 March 2025

    Abstract Brain tumors, one of the most lethal diseases with low survival rates, require early detection and accurate diagnosis to enable effective treatment planning. While deep learning architectures, particularly Convolutional Neural Networks (CNNs), have shown significant performance improvements over traditional methods, they struggle to capture the subtle pathological variations between different brain tumor types. Recent attention-based models have attempted to address this by focusing on global features, but they come with high computational costs. To address these challenges, this paper introduces a novel parallel architecture, ParMamba, which uniquely integrates Convolutional Attention Patch Embedding (CAPE) and the… More >

Displaying 61-70 on page 7 of 3414. Per Page