Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    ARTICLE

    A Task Offloading Method for Vehicular Edge Computing Based on Reputation Assessment

    Jun Li1,*, Yawei Dong1, Liang Ni1, Guopeng Feng1, Fangfang Shan1,2

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3537-3552, 2025, DOI:10.32604/cmc.2025.059325 - 16 April 2025

    Abstract With the development of vehicle networks and the construction of roadside units, Vehicular Ad Hoc Networks (VANETs) are increasingly promoting cooperative computing patterns among vehicles. Vehicular edge computing (VEC) offers an effective solution to mitigate resource constraints by enabling task offloading to edge cloud infrastructure, thereby reducing the computational burden on connected vehicles. However, this sharing-based and distributed computing paradigm necessitates ensuring the credibility and reliability of various computation nodes. Existing vehicular edge computing platforms have not adequately considered the misbehavior of vehicles. We propose a practical task offloading algorithm based on reputation assessment to More >

  • Open Access

    ARTICLE

    A Privacy-Preserving Graph Neural Network Framework with Attention Mechanism for Computational Offloading in the Internet of Vehicles

    Aishwarya Rajasekar*, Vetriselvi Vetrian

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 225-254, 2025, DOI:10.32604/cmes.2025.062642 - 11 April 2025

    Abstract The integration of technologies like artificial intelligence, 6G, and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle applications. However, these advancements also generate a surge in data processing requirements, necessitating the offloading of vehicular tasks to edge servers due to the limited computational capacity of vehicles. Despite recent advancements, the robustness and scalability of the existing approaches with respect to the number of vehicles and edge servers and their resources, as well as privacy, remain a concern. In this paper, a lightweight… More >

  • Open Access

    ARTICLE

    Reliable Task Offloading for 6G-Based IoT Applications

    Usman Mahmood Malik1, Muhammad Awais Javed2, Ahmad Naseem Alvi2, Mohammed Alkhathami3,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2255-2274, 2025, DOI:10.32604/cmc.2025.061254 - 17 February 2025

    Abstract Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing, and data storage services which are required for several 6G applications. Artificial Intelligence (AI) algorithms will be an integral part of 6G systems and efficient task offloading techniques using fog computing will improve their performance and reliability. In this paper, the focus is on the scenario of Partial Offloading of a Task to Multiple Helpers (POMH) in which larger tasks are divided into smaller subtasks and processed in parallel, hence expediting task completion. However, using POMH presents challenges… More >

  • Open Access

    ARTICLE

    MATD3-Based End-Edge Collaborative Resource Optimization for NOMA-Assisted Industrial Wireless Networks

    Ru Hao1,2,3, Chi Xu2,3,*, Jing Liu1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3203-3222, 2025, DOI:10.32604/cmc.2024.059689 - 17 February 2025

    Abstract Non-orthogonal multiple access (NOMA) technology has recently been widely integrated into multi-access edge computing (MEC) to support task offloading in industrial wireless networks (IWNs) with limited radio resources. This paper minimizes the system overhead regarding task processing delay and energy consumption for the IWN with hybrid NOMA and orthogonal multiple access (OMA) schemes. Specifically, we formulate the system overhead minimization (SOM) problem by considering the limited computation and communication resources and NOMA efficiency. To solve the complex mixed-integer nonconvex problem, we combine the multi-agent twin delayed deep deterministic policy gradient (MATD3) and convex optimization, namely More >

  • Open Access

    ARTICLE

    Dynamic Task Offloading Scheme for Edge Computing via Meta-Reinforcement Learning

    Jiajia Liu1,*, Peng Xie2, Wei Li2, Bo Tang2, Jianhua Liu2

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2609-2635, 2025, DOI:10.32604/cmc.2024.058810 - 17 February 2025

    Abstract As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective… More >

  • Open Access

    ARTICLE

    An Asynchronous Data Transmission Policy for Task Offloading in Edge-Computing Enabled Ultra-Dense IoT

    Dayong Wang1,*, Kamalrulnizam Bin Abu Bakar1, Babangida Isyaku2, Liping Lei3

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4465-4483, 2024, DOI:10.32604/cmc.2024.059616 - 19 December 2024

    Abstract In recent years, task offloading and its scheduling optimization have emerged as widely discussed and significant topics. The multi-objective optimization problems inherent in this domain, particularly those related to resource allocation, have been extensively investigated. However, existing studies predominantly focus on matching suitable computational resources for task offloading requests, often overlooking the optimization of the task data transmission process. This inefficiency in data transmission leads to delays in the arrival of task data at computational nodes within the edge network, resulting in increased service times due to elevated network transmission latencies and idle computational resources.… More >

  • Open Access

    ARTICLE

    UAV-Assisted Multi-Object Computing Offloading for Blockchain-Enabled Vehicle-to-Everything Systems

    Ting Chen1, Shujiao Wang2, Xin Fan3,*, Xiujuan Zhang2, Chuanwen Luo3, Yi Hong3

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3927-3950, 2024, DOI:10.32604/cmc.2024.056961 - 19 December 2024

    Abstract This paper investigates an unmanned aerial vehicle (UAV)-assisted multi-object offloading scheme for blockchain-enabled Vehicle-to-Everything (V2X) systems. Due to the presence of an eavesdropper (Eve), the system’s communication links may be insecure. This paper proposes deploying an intelligent reflecting surface (IRS) on the UAV to enhance the communication performance of mobile vehicles, improve system flexibility, and alleviate eavesdropping on communication links. The links for uploading task data from vehicles to a base station (BS) are protected by IRS-assisted physical layer security (PLS). Upon receiving task data, the computing resources provided by the edge computing servers (MEC)… More >

  • Open Access

    ARTICLE

    A Task Offloading Strategy Based on Multi-Agent Deep Reinforcement Learning for Offshore Wind Farm Scenarios

    Zeshuang Song1, Xiao Wang1,*, Qing Wu1, Yanting Tao1, Linghua Xu1, Yaohua Yin2, Jianguo Yan3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 985-1008, 2024, DOI:10.32604/cmc.2024.055614 - 15 October 2024

    Abstract This research is the first application of Unmanned Aerial Vehicles (UAVs) equipped with Multi-access Edge Computing (MEC) servers to offshore wind farms, providing a new task offloading solution to address the challenge of scarce edge servers in offshore wind farms. The proposed strategy is to offload the computational tasks in this scenario to other MEC servers and compute them proportionally, which effectively reduces the computational pressure on local MEC servers when wind turbine data are abnormal. Finally, the task offloading problem is modeled as a multi-intelligent deep reinforcement learning problem, and a task offloading model… More >

  • Open Access

    ARTICLE

    Task Offloading and Trajectory Optimization in UAV Networks: A Deep Reinforcement Learning Method Based on SAC and A-Star

    Jianhua Liu*, Peng Xie, Jiajia Liu, Xiaoguang Tu

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1243-1273, 2024, DOI:10.32604/cmes.2024.054002 - 27 September 2024

    Abstract In mobile edge computing, unmanned aerial vehicles (UAVs) equipped with computing servers have emerged as a promising solution due to their exceptional attributes of high mobility, flexibility, rapid deployment, and terrain agnosticism. These attributes enable UAVs to reach designated areas, thereby addressing temporary computing swiftly in scenarios where ground-based servers are overloaded or unavailable. However, the inherent broadcast nature of line-of-sight transmission methods employed by UAVs renders them vulnerable to eavesdropping attacks. Meanwhile, there are often obstacles that affect flight safety in real UAV operation areas, and collisions between UAVs may also occur. To solve… More >

  • Open Access

    ARTICLE

    Two-Stage IoT Computational Task Offloading Decision-Making in MEC with Request Holding and Dynamic Eviction

    Dayong Wang1,*, Kamalrulnizam Bin Abu Bakar1, Babangida Isyaku2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2065-2080, 2024, DOI:10.32604/cmc.2024.051944 - 15 August 2024

    Abstract The rapid development of Internet of Things (IoT) technology has led to a significant increase in the computational task load of Terminal Devices (TDs). TDs reduce response latency and energy consumption with the support of task-offloading in Multi-access Edge Computing (MEC). However, existing task-offloading optimization methods typically assume that MEC’s computing resources are unlimited, and there is a lack of research on the optimization of task-offloading when MEC resources are exhausted. In addition, existing solutions only decide whether to accept the offloaded task request based on the single decision result of the current time slot,… More >

Displaying 1-10 on page 1 of 32. Per Page