Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    An Improved Higher-Order Time Integration Algorithm for Structural Dynamics

    Yi Ji1,2, Yufeng Xing1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 549-575, 2021, DOI:10.32604/cmes.2021.014244

    Abstract Based on the weighted residual method, a single-step time integration algorithm with higher-order accuracy and unconditional stability has been proposed, which is superior to the second-order accurate algorithms in tracking long-term dynamics. For improving such a higher-order accurate algorithm, this paper proposes a two sub-step higher-order algorithm with unconditional stability and controllable dissipation. In the proposed algorithm, a time step interval [tk, tk + h] where h stands for the size of a time step is divided into two sub-steps [tk, tk + γh] and [tk + γh, tk + h]. A non-dissipative fourth-order algorithm is used in the rst… More >

  • Open Access

    ARTICLE

    Dynamic Nonlinear Material Behaviour of Thin Shells in Finite Displacements and Rotations

    C.E. Majorana1, V.A. Salomoni

    CMES-Computer Modeling in Engineering & Sciences, Vol.33, No.1, pp. 49-84, 2008, DOI:10.3970/cmes.2008.033.049

    Abstract A dynamic analysis of a thin shell finite element undergoing large displacements and rotations is here presented. The constitutive model adopted derives from the coupling of an hyperelastic basic model fulfilling a De Saint Venant-Kirchhoff criterion with a scalar damage function depending on the maximum value of a suitable strain measure attained through the deformation history; then plastic effects are included using an isotropic/kinematic hardening law. A conservative time integration scheme for the non-linear dynamics of the hyperelastic damaged-plastic thin shell is applied. The main characteristic of the scheme is to be conservative, since it allows for the time-discrete system… More >

  • Open Access

    ARTICLE

    A Conservative Time Integration Scheme for Dynamics of Elasto-damaged Thin Shells

    L. Briseghella1, C. Majorana1, P. Pavan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.2, pp. 273-286, 2003, DOI:10.3970/cmes.2003.004.273

    Abstract Some aspects of the application of a conservative time integration scheme to the non-linear dynamics of elasto-damaged thin shells are presented. The main characteristic of the scheme is to be conservative, in the sense that it allows the time-discrete system to preserve the basic laws of continuum, namely the balance of the linear and angular momenta as well as the fulfilment of the second law of thermodynamic. Here the method is applied to thin shells under large displacements and rotations. The constitutive model adopted is built coupling the linear elastic model of De Saint Venant-Kirchhoff with a scalar damage function… More >

Displaying 1-10 on page 1 of 3. Per Page