Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (214)
  • Open Access

    ABSTRACT

    Fluid transport in a Heterogeneous Porous Medium: Experiments, Mathematics and Computations

    A.P. Selvadurai

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.3, pp. 67-68, 2011, DOI:10.3970/icces.2011.016.067

    Abstract Theme Lecture More >

  • Open Access

    ABSTRACT

    A High-Order Numerical Model for Species Transport and Emergency Response

    Xiuling Wang, Darrell W. Pepper

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.1, pp. 17-18, 2011, DOI:10.3970/icces.2011.016.017

    Abstract A high-order numerical model is developed to simulate species transport for use in emergency response situations. The model includes employing an hp-adaptive finite element technique to construct velocity fields within complex geometries as well as over irregular terrain features. Lagrangian particles are used to display contaminant dispersion patterns. The use of hp-adaptive finite element methods permit both automatic local refinement and unrefinement of the computational grid - a fine mesh is developed in those regions where flow features and/or species gradients change rapidly while a coarse mesh is employed where flow and transport are unvarying More >

  • Open Access

    ARTICLE

    Numerical Inversion of a Time-Dependent Reaction Coefficient in a Soil-Column Infiltrating Experiment

    Gongsheng Li1, De Yao2, Hengyi Jiang3, Xianzheng Jia1

    CMES-Computer Modeling in Engineering & Sciences, Vol.74, No.2, pp. 83-108, 2011, DOI:10.3970/cmes.2011.074.083

    Abstract This paper deals with an inverse problem of determining a time-depen -dent reaction coefficient arising from a disturbed soil-column infiltrating experiment based on measured breakthrough data. A purpose of doing such experiment is to simulate and study transport behaviors of contaminants when they vertically penetrating through the soils. Data compatibility of the inverse problem is discussed showing a sufficient condition to the solution's monotonicity and positivity with the help of an adjoint problem. Furthermore, an optimal perturbation regularization algorithm is applied to solve the inverse problem, and two typical numerical examples are presented to support More >

  • Open Access

    ARTICLE

    Enhancement Transport Phenomena in the Navier-Stokes Shell-like Slip Layer

    J. Badur1, M. Karcz1, M. Lemanski1, L. Nastalek1

    CMES-Computer Modeling in Engineering & Sciences, Vol.73, No.3, pp. 299-310, 2011, DOI:10.3970/cmes.2011.073.299

    Abstract In the paper we propose to remove the classical Navier slip condition and replace it with new generalized Navier-Stokes slip boundary conditions. These conditions are postulated to be ones following from the mass and momentum balance within a thin, shell-like moving boundary layer. Owing to this, the problem consistency between the internal and external friction in a viscous fluid is solved within the framework of a proper form of the layer balances, and a proper form of constitutive relations for appropriate friction forces. Finally, the common features of the Navier, Stokes, Maxwell and Reynolds concepts More >

  • Open Access

    ARTICLE

    ON MODELING OF HEAT AND MASS TRANSFER AND OTHER TRANSPORT PHENOMENA IN FUEL CELLS

    Bengt Sundén*, Jinliang Yuan

    Frontiers in Heat and Mass Transfer, Vol.1, No.1, pp. 1-20, 2010, DOI:10.5098/hmt.v1.1.3008

    Abstract Depending on specific configuration and design, a variety of physical phenomena is present in fuel cells, e.g., multi-component gas flow, energy and mass transfer of chemical species in composite domains and sites. These physical phenomena are strongly affected by chemical/electrochemical reactions in nano-/micro-scale structured electrodes and electrolytes. Due to the electrochemical reactions, generation and consumption of chemical species together with electric current production take place at the active surfaces for all kinds of fuel cells. Furthermore, water management and twophase flow in proton exchange membrane fuel cells (PEMFCs) and internal reforming reactions of hydrocarbon fuels More >

  • Open Access

    ARTICLE

    Nuclear pores in luteal cells during pregnancy and after parturition and pup removal in the rat. A freeze-fracture study

    JUAN CARLOS CAVICCHIA*, GUSTAVO GUEMBE, MABEL FÓSCOLO

    BIOCELL, Vol.34, No.2, pp. 81-90, 2010, DOI:10.32604/biocell.2010.34.081

    Abstract In a previous paper we described a pronounced increase of apoptotic nuclei in rat corpus luteum of pregnancy whose programmed chromatin degeneration was induced by the progesterone antagonist mifepristone. Those observations encouraged us to study the apoptotic nuclear membrane during pregnancy and after parturition and pup removal, by using a freeze-fracture technique which allows us to observe ‘en face’ the nuclear envelop and also permits nuclear pore counting. This study was complemented with the TUNEL assay (TdT-mediated dUTP nick-end labelling). Changes in nuclear pores during pregnancy begin with an intense reduction in number but still… More >

  • Open Access

    ARTICLE

    A New Method for Maintenance Management Employing Principal Component Analysis

    Fausto Pedro García Márquez1

    Structural Durability & Health Monitoring, Vol.6, No.2, pp. 89-100, 2010, DOI:10.3970/sdhm.2010.006.089

    Abstract This paper presents a simple graphic method for detecting and classifying faults in point mechanisms based on the study of some statistical parameters of the force and current signals of the point machine. Principal Components Analysis (PCA) employed in order to reduce the number of these parameters. PCA is utilised in this paper for modifying the parameter dataset, and reducing the coordinate system by linear transformation. It is then possible to plot the new coordinate system in 2 or 3 dimensions, where the faults can be detected and identified. In this work most of the More >

  • Open Access

    ARTICLE

    On the Solution of an Inverse Problem for an Integro-differential Transport Equation

    Ismet Gölgeleyen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.64, No.1, pp. 71-90, 2010, DOI:10.3970/cmes.2010.064.071

    Abstract In this paper, the solvability conditions for an inverse problem for an integro-differential transport equation are obtained and a numerical approximation method based on the finite difference method is developed. A comparison between the numerical solution and the exact solution of the problem is presented. Experimental results show that proposed method is robust to data noises. More >

  • Open Access

    ABSTRACT

    Numerical simulation of fire and smoke transport for an old-style apartment fire

    C.S. Lin, T.C. Chen, C.C. Yu ,M.E. Wu, Y.H. Tu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.3, pp. 103-110, 2010, DOI:10.3970/icces.2010.015.103

    Abstract Most old apartments in Taiwan lack fire prevention equipment, making fire awareness and escape difficult, as well as timely fire fighting, which leads to increased death tolls from fire incidents. This research utilizes Fire Dynamics Simulator (FDS) software to analyze and simulate the fire accident that occurred in a single old-style five-story apartment on Siu-Lang Road, Chung-Ho City. In this event, many occupant vehicles were parked at the front door of the apartment building or in nearby parking lanes. The fire engine can only drive in after vehicles were cleared from the fire area, a More >

  • Open Access

    ARTICLE

    Development of a Hyperbranched Fuel Cell Membrane Material for Improved Proton Conductivity

    Leela Rakesh1, Anja Mueller2, Pratik Chhetri1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.2, pp. 179-202, 2010, DOI:10.3970/fdmp.2010.006.179

    Abstract A new material for proton conducting membrane with a higher proton transport but reduced water transport is being developed. The new material optimizes proton channel formation, this reducing water transport at the same time. Different proton transporting groups along with different gas flowing channels are examined as well. To meet the goals we design, synthesize, and simulate various proton transporting groups using MD techniques for faster optimization, which in turn helps to synthesize and test only promising structures in the laboratory. At the same time, computer modeling is used to improve the fuel cell system More >

Displaying 181-190 on page 19 of 214. Per Page