Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (202)
  • Open Access

    REVIEW

    Glutamine transporters as effective targets in digestive system malignant tumor treatment

    FEI CHU1, KAI TONG1, XIANG GU1, MEI BAO1, YANFEN CHEN1, BIN WANG2, YANHUA SHAO1, LING WEI1,*

    Oncology Research, Vol.32, No.10, pp. 1661-1671, 2024, DOI:10.32604/or.2024.048287

    Abstract Glutamine is one of the most abundant non-essential amino acids in human plasma and plays a crucial role in many biological processes of the human body. Tumor cells take up a large amount of glutamine to meet their rapid proliferation requirements, which is supported by the upregulation of glutamine transporters. Targeted inhibition of glutamine transporters effectively inhibits cell growth and proliferation in tumors. Among all cancers, digestive system malignant tumors (DSMTs) have the highest incidence and mortality rates, and the current therapeutic strategies for DSMTs are mainly surgical resection and chemotherapy. Due to the relatively More > Graphic Abstract

    Glutamine transporters as effective targets in digestive system malignant tumor treatment

  • Open Access

    ARTICLE

    EV Charging Station Load Prediction in Coupled Urban Transportation and Distribution Networks

    Benxin Li*, Xuanming Chang

    Energy Engineering, Vol.121, No.10, pp. 3001-3018, 2024, DOI:10.32604/ee.2024.051332

    Abstract The increasingly large number of electric vehicles (EVs) has resulted in a growing concern for EV charging station load prediction for the purpose of comprehensively evaluating the influence of the charging load on distribution networks. To address this issue, an EV charging station load prediction method is proposed in coupled urban transportation and distribution networks. Firstly, a finer dynamic urban transportation network model is formulated considering both nodal and path resistance. Then, a finer EV power consumption model is proposed by considering the influence of traffic congestion and ambient temperature. Thirdly, the Monte Carlo method… More > Graphic Abstract

    EV Charging Station Load Prediction in Coupled Urban Transportation and Distribution Networks

  • Open Access

    ARTICLE

    MiR-219a-5p exerts a protective function in a mouse model of myocardial infarction

    ZULONG SHENG*, YANRU HE, JUNYAN CAI, YUQIN JI, YUYU YAO, GENSHAN MA

    BIOCELL, Vol.48, No.9, pp. 1369-1377, 2024, DOI:10.32604/biocell.2024.049905

    Abstract Background: Myocardial infarction (MI) is known worldwide for its important disabling features, including myocarditis and cardiomyocyte apoptosis. It is believed that microRNA (miRNA) has a role in the cellular processes of apoptosis and myocarditis, and miR-219a-5p has been found to suppress the inflammatory response. However, unknown is the precise mechanism by which miR-219a-5p contributes to MI. Methods: We measured the expression of miR-219a-5p and evaluated its effects on target proteins, inflammatory factors, and apoptosis in a mouse model of MI. Echocardiography was utilized to examine the MI clinical index, and triphenyl tetrazolium chloride staining was More >

  • Open Access

    ARTICLE

    Droplet Condensation and Transport Properties on Multiple Composite Surface: A Molecular Dynamics Study

    Haowei Hu1,2,*, Qi Wang1, Xinnuo Chen1, Qin Li3, Mu Du4, Dong Niu5,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1245-1259, 2024, DOI:10.32604/fhmt.2024.054223

    Abstract To investigate the microscopic mechanism underlying the influence of surface-chemical gradient on heat and mass recovery, a molecular dynamics model including droplet condensation and transport process has been developed to examine heat and mass recovery performance. This work aimed at identify optimal conditions for enhancing heat and mass recovery through the combination of wettability gradient and nanopore transport. For comprehensive analysis, the structure in the simulation was categorized into three distinct groups: a homogeneous structure, a small wettability gradient, and a large wettability gradient. The homogeneous surface demonstrated low efficiency in heat and mass transfer, More >

  • Open Access

    ARTICLE

    Investigating Transport Properties of Environmentally Friendly Azeotropic Binary Blends Based on Evaporation in Auto-Cascade Refrigeration

    Zhenzhen Liu, Hua Zhang*, Zilong Wang, Yugang Zhao

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1087-1105, 2024, DOI:10.32604/fhmt.2024.053851

    Abstract The exploration of performance and prediction of environmentally friendly refrigerant physical properties represents a critical endeavor. Equilibrium molecular dynamics simulations were employed to investigate the density and transport properties of propane and ethane at ultra-low temperatures under evaporative pressure conditions. The results of the density simulation of the evaporation conditions of the blends proved the validity of the simulation method. Under identical temperature and pressure conditions, increasing the proportion of R170 in the refrigerant blends leads to a density decrease while the temperature range in which the gas-liquid phase transition occurs is lower. The analysis More >

  • Open Access

    ARTICLE

    Reducing Condensation Inside the Photovoltaic (PV) Inverter according to the Effect of Diffusion as a Process of Vapor Transport

    Amal El Berry, Marwa M. Ibrahim*, A. A. Elfeky, Mohamed F. Nasr

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1189-1207, 2024, DOI:10.32604/fhmt.2024.050684

    Abstract A photovoltaic (PV) inverter is a vital component of a photovoltaic (PV) solar system. Photovoltaic (PV) inverter failure can mean a solar system that is no longer functioning. When electronic devices such as photovoltaic (PV) inverter devices are subjected to vapor condensation, a risk could occur. Given the amount of moisture in the air, saturation occurs when the temperature drops to the dew point, and condensation may form on surfaces. Numerical simulation with “COMSOL Software” is important for obtaining knowledge relevant to preventing condensation by using two steps. At first, the assumption was that the… More >

  • Open Access

    ARTICLE

    Ultra-conservative noncoding RNA uc.243 confers chemo-resistance by facilitating the efflux of the chemotherapeutic drug in ovarian cancer

    SHAN JIANG1,2, XIUFENG LIN2, YANFEI CHEN3, XINNING LI3, JIALI KANG1,4,*

    BIOCELL, Vol.48, No.8, pp. 1265-1273, 2024, DOI:10.32604/biocell.2024.051478

    Abstract Background: Despite improvements in objective response rates to cisplatin-based combination chemotherapy, the majority of advanced ovarian cancer remains suboptimal, resulting in poor survival. it has been found that non-coding RNAs (ncRNAs) not only participate in the transmission of signals between various cells but also participate in tumor immunity and anti-tumor immune responses, thereby regulating tumor occurrence and development. However, the function and detailed mechanism of ultraconserved RNA (ucRNA) in ovarian cancer chemoresistance is still unclear. Methods: Western blotting assay, Quantitative real-time PCR analysis (qPCR), and Kaplan-Meier Plotter analysis were performed to analyze the expression and prognosis… More >

  • Open Access

    ARTICLE

    Genome-Wide Discovery and Expression Profiling of the SWEET Sugar Transporter Gene Family in Woodland Strawberry (Fragaria vesca) under Developmental and Stress Conditions: Structural and Evolutionary Analysis

    Shoukai Lin1,3,4,*, Yifan Xiong2, Shichang Xu1,2, Manegdebwaoaga Arthur Fabrice Kabore2, Fan Lin5, Fuxiang Qiu1,2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.7, pp. 1485-1502, 2024, DOI:10.32604/phyton.2024.050990

    Abstract The SWEET (sugar will eventually be exported transporter) family proteins are a recently identified class of sugar transporters that are essential for various physiological processes. Although the functions of the SWEET proteins have been identified in a number of species, to date, there have been no reports of the functions of the SWEET genes in woodland strawberries (Fragaria vesca). In this study, we identified 15 genes that were highly homologous to the A. thaliana AtSWEET genes and designated them as FvSWEET1FvSWEET15. We then conducted a structural and evolutionary analysis of these 15 FvSWEET genes. The phylogenetic analysis enabled us… More >

  • Open Access

    ARTICLE

    Coupled CFD-DEM Numerical Simulation of the Interaction of a Flow-Transported Rag with a Solid Cylinder

    Yun Ren1,*, Lianzheng Zhao2, Xiaofan Mo2, Shuihua Zheng2, Youdong Yang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1593-1609, 2024, DOI:10.32604/fdmp.2024.046274

    Abstract A coupled Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) approach is used to calculate the interaction of a flexible rag transported by a fluid current with a fixed solid cylinder. More specifically a hybrid Eulerian-Lagrangian approach is used with the rag being modeled as a set of interconnected particles. The influence of various parameters is considered, namely the inlet velocity (1.5, 2.0, and 2.5 m/s, respectively), the angle formed by the initially straight rag with the flow direction (45°, 60° and 90°, respectively), and the inlet position (90, 100, and 110 mm, respectively). The results show More > Graphic Abstract

    Coupled CFD-DEM Numerical Simulation of the Interaction of a Flow-Transported Rag with a Solid Cylinder

  • Open Access

    REVIEW

    The Correlation between Nutrition and Transport Mechanism under Abiotic Stress in Plants: A Comprehensive Review

    Muhammad Saleem1, Jianhua Zhang1, Muhammad Qasim2, Rashid Iqbal3, Li Song1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.6, pp. 1325-1344, 2024, DOI:10.32604/phyton.2024.048493

    Abstract Variations in the nutrients and water that plants require for metabolism, development, and the maintenance of cellular homeostasis are the main causes of abiotic stress in plants. It has, however, hardly ever been studied how these transporter proteins, such as aquaporin which is responsible for food and water intake in cell plasma membranes, interact with one another. This review aims to explore the interactions between nutrient transporters and aquaporins during water and nutrient uptake. It also investigates how symbiotic relationships influence the plant genome’s responses to regulatory processes such as photoperiodism, senescence, and nitrogen fixation. More >

Displaying 1-10 on page 1 of 202. Per Page