Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (264)
  • Open Access

    REVIEW

    Dual-Mode Data-Driven Iterative Learning Control: Applications in Precision Manufacturing and Intelligent Transportation Systems

    Lei Wang1,2, Menghan Wei2, Ziwei Huangfu3, Shunjie Zhu2, Xuejian Ge1,*, Zhengquan Li4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-32, 2026, DOI:10.32604/cmc.2025.071295 - 09 December 2025

    Abstract Iterative Learning Control (ILC) provides an effective framework for optimizing repetitive tasks, making it particularly suitable for high-precision applications in both precision manufacturing and intelligent transportation systems (ITS). This paper presents a systematic review of ILC’s developmental progress, current methodologies, and practical implementations across these two critical domains. The review first analyzes the key technical challenges encountered when integrating ILC into precision manufacturing workflows. Through case studies, it evaluates demonstrated improvements in positioning accuracy, surface finish quality, and production throughput. Furthermore, the study examines ILC’s applications in ITS, with particular focus on vehicular motion control More >

  • Open Access

    ARTICLE

    Bi-STAT+: An Enhanced Bidirectional Spatio-Temporal Adaptive Transformer for Urban Traffic Flow Forecasting

    Yali Cao1, Weijian Hu1,2, Lingfang Li1,*, Minchao Li1, Meng Xu2, Ke Han2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.069373 - 09 December 2025

    Abstract Traffic flow prediction constitutes a fundamental component of Intelligent Transportation Systems (ITS), playing a pivotal role in mitigating congestion, enhancing route optimization, and improving the utilization efficiency of roadway infrastructure. However, existing methods struggle in complex traffic scenarios due to static spatio-temporal embedding, restricted multi-scale temporal modeling, and weak representation of local spatial interactions. This study proposes Bi-STAT+, an enhanced bidirectional spatio-temporal attention framework to address existing limitations through three principal contributions: (1) an adaptive spatio-temporal embedding module that dynamically adjusts embeddings to capture complex traffic variations; (2) frequency-domain analysis in the temporal dimension for… More >

  • Open Access

    ARTICLE

    Unveiling Ionic Conductivity and Ion Transport Properties in Polyvinyl Alcohol-Based Gel Polymer Electrolytes with Quaternary Ammonium Iodide

    M. F. Aziz1,2,*, A. A. Rahim1, A. R. M. Rais1,2,*

    Journal of Polymer Materials, Vol.42, No.4, pp. 1097-1109, 2025, DOI:10.32604/jpm.2025.071129 - 26 December 2025

    Abstract To study the behavior of structural dynamics, ionic conductivity and ion transport properties, the gel polymer electrolytes (GPEs) was developed using polyvinyl alcohol in combination with potassium iodide, dimethyl sulfoxide, ethylene carbonate, propylene carbonate and tetra-N-propylammonium iodide (C12H28IN), The GPEs were synthesized via a solution mixing technique, systematically varying the tetra-N-propylammonium iodide concentration to optimize ionic transport properties. The gel polymer electrolytes (GPEs) preparation was initially dissolving the potassium iodide and tetra-N-propylammonium iodide in a measured combination of ethylene carbonate, propylene carbonate, and dimethyl sulfoxide within a glass container. Subsequently, polyvinyl alcohol (PVA) was introduced into… More >

  • Open Access

    ARTICLE

    Synthesis and characterizations of Cu2BaSnS4 nanoparticles via solvothermal route

    G. Hao*, Z. Chen, R. Xian, W. Yifan

    Chalcogenide Letters, Vol.22, No.3, pp. 255-260, 2025, DOI:10.15251/CL.2025.223.255

    Abstract In present work, Cu2BaSnS4(CBTS) nanoparticles are reported solvothermally synthesized. The formation of single-phase trigonal structure of CBTS nanoparticles is confirmed by XRD and Raman spectroscopic analysis. SEM studies reveal that CBTS exhibits flower shaped structure self-assembling by nanosheets with uniform average thickness 30nm. CBTS materials show abroad absorption in the complete visible range, providing a band-gap value of 1.58eV, indicating potential applications in photocvoltaics. The excellent MB degradation efficiency of 93% under visible light within 100min is achieved, suggesting CBTS is a potential material for effective solar light photocatalytic application. Meanwhile, electrical properties are measured up More >

  • Open Access

    ARTICLE

    Quaternary chalcogenides as transport layers in solid-state DSSC: a feasibility study

    M. H. Ibrahim*, M. R. Salim, M. Y. Mohd Nor, A. S. Abdullah, A. I. Azmi

    Chalcogenide Letters, Vol.22, No.6, pp. 551-560, 2025, DOI:10.15251/CL.2025.226.551

    Abstract Four chalcogenide compounds: copper zinc germanium sulfide (CZGS), copper zinc germanium selenide (CZGSe), copper barium tin sulfide (CBTS), and copper manganese tin sulfide (CMTS) were proposed as hole transport layer (HTL) in dye-sensitized solar cell (DSSC). The DSSC structure comprises fluorine-doped tin oxide (FTO) as the top electrode, zinc oxysulfide (ZnOS) as the electron transport layer (ETL), N719 dye as the light absorber, chalcogenides as the HTL, and gold (Au) as the back electrode. By utilizing the SCAPS 1- D simulator, the optimal thicknesses for ZnOS, HTL candidates and N719 dye were determined to be More >

  • Open Access

    ARTICLE

    Structural, optical and electrical properties of NiO thin films for hole transport layer in chalcogenide and perovskite materials based solar cells

    M. Abbasa, M. Haseeb-u-Rehmana, M. Sohailb, G. H. Tariqa,*

    Chalcogenide Letters, Vol.22, No.7, pp. 561-577, 2025, DOI:10.15251/CL.2025.227.561

    Abstract This work presents the fabrication of NiO thin films via versatile sol-gel spin coating method and investigation of annealing effects on their physical properties. After the deposition process, the NiO thin films underwent annealing process at different values of temperatures ranging from 200°C to 350°C for one hour duration. XRD patterns confirmed the polycrystalline nature, along the preferred orientations (110) and (101) planes. Nanoparticles in NiO thin films demonstrated an increase in crystallite size with rising annealing temperatures, reaching a maximum size of 49 nm at annealing temperature 300°C. FTIR patterns revealed Ni-O bands at… More >

  • Open Access

    ARTICLE

    Performance evaluation of CdTe-based heterojunction solar cell with IGZO-based window layer and electron transport layer

    R. K. Mishraa,*, M. N. Anwara, M. A. Hasanb

    Chalcogenide Letters, Vol.22, No.10, pp. 871-882, 2025, DOI:10.15251/CL.2025.2210.871

    Abstract This study introduces a novel approach to enhancing the performance of CdTe/IGZO-based heterojunction solar cells by utilizing IGZO as both a window layer and an electron transport layer (ETL). A comprehensive simulation using SCAPS-1D was conducted to evaluate the impact of various transparent conductive oxides (TCOs), including ITO, SnO, ZnO, and FTO, on key photovoltaic parameters such as power conversion efficiency (PCE), open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF). The research also explores the critical role of transport layers (HTL/ETL) and their material properties, band alignment, carrier mobility, and defect density, in More >

  • Open Access

    ARTICLE

    Survey of Barley Sodium Transporter HvHKT1;1 Variants and Their Functional Analysis

    Shahin Imran1,2, Maki Katsuhara1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3653-3665, 2025, DOI:10.32604/phyton.2025.073959 - 01 December 2025

    Abstract Barley (Hordeum vulgare L.) employs the Na+ transporter HvHKT1;1, which is an N+-selective transporter. This study characterized the full-length HvHKT1;1 (HvHKT1;1-FL) and three mRNA variants (HvHKT1;1-V1, -V2, and -V3), which encode polypeptides of 64.7, 54.0, 40.5, and 32.9 kDa, respectively. Tissue-specific expression profiling revealed that HvHKT1;1-FL is the most abundant transcript across leaf, sheath, and root tissues under normal conditions, with the highest expression in leaves. Under 150 mM NaCl stress, HvHKT1;1-FL and its variants showed a dynamic, time-dependent expression pattern, with peak leaf expression at 2 h, sheath expression at 12 h, and root expression at 2 h, suggesting their… More >

  • Open Access

    REVIEW

    Cadmium Hyperaccumulation in Plants: Mechanistic Insights and Ecological Implications

    Mingwei Yue1, Shen Rao1,*, Xiaomeng Liu1, Wei Yang2, Yuan Yuan1, Feng Xu2, Shuiyuan Cheng1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3319-3348, 2025, DOI:10.32604/phyton.2025.073602 - 01 December 2025

    Abstract Cadmium (Cd), a highly toxic heavy metal, represents a major global environmental threat due to its widespread dispersion through anthropogenic activities. Environmental Cd contamination poses significant risks to living organisms, including humans, animals, and plants. Certain plant species have evolved Cd hyperaccumulating capabilities to adapt to high-Cd habitats, playing critical roles in phytoremediation strategies. Here we review the biodiversity and biogeography of Cd hyperaccumulators, the underlying mechanisms of Cd uptake and accumulation, and the ecological impacts of hyperaccumulation. The major points are the following: twenty-four Cd hyperaccumulator species have been documented, with shoot Cd concentrations More >

  • Open Access

    ARTICLE

    Stress Intensity Factor, Plastic Limit Pressure and Service Life Assessment of a Transportation-Damaged Pipe with a High-Aspect-Ratio Axial Surface Crack

    Božo Damjanović*, Pejo Konjatić, Marko Katinić

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1735-1753, 2025, DOI:10.32604/cmes.2025.072256 - 26 November 2025

    Abstract Ensuring the structural integrity of piping systems is crucial in industrial operations to prevent catastrophic failures and minimize shutdown time. This study investigates a transportation-damaged pipe exposed to high-temperature conditions and cyclic loading, representing a realistic challenge in plant operation. The objective was to evaluate the service life and integrity assessment parameters of the damaged pipe, subjected to 22,000 operational cycles under two daily charge and discharge conditions. The flaw size in the damaged pipe was determined based on a failure assessment procedure, ensuring a conservative and reliable input. The damage was characterized as a… More >

Displaying 1-10 on page 1 of 264. Per Page