Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (236)
  • Open Access

    PROCEEDINGS

    Deep-Potential Enabled Multiscale Simulation of Interfacial Thermal Transport in Boron Arsenide Heterostructures

    Jing Wu1, E Zhou1, An Huang1, Hongbin Zhang2, Ming Hu3, Guangzhao Qin1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012552

    Abstract High thermal conductivity substrate plays a significant role for efficient heat dissipation of electronic devices, and it is urgent to optimize the interfacial thermal resistance. As a novel material with ultra-high thermal conductivity second only to diamond, boron arsenide (BAs) shows promising applications in electronics cooling [1,2]. By adopting multi-scale simulation method driven by machine learning potential, we systematically study the thermal transport properties of boron arsenide, and further investigate the interfacial thermal transport in the GaN-BAs heterostructures. Ultrahigh interfacial thermal conductance of 260 MW m-2K-1 is achieved, which agrees well with experimental measurements, and the More >

  • Open Access

    PROCEEDINGS

    A Generalized Knudsen Theory for Gas Through Nanocapillaries Transport

    Fengchao Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011068

    Abstract Gas permeation through nanopores is a long-standing research interest because of its importance in fundamental science and many technologies. The free molecular flow is conventionally described by Knudsen theory, under the diffuse reflection assumption. Recent experiments reported ballistic molecular transport of gases, which urges for the development of theoretical tools to address the predominant specular reflections on atomically smooth surfaces. Here we develop a generalized Knudsen theory, which is applicable to various boundary conditions covering from the extreme specular reflection to the complete diffuse reflection [1]. Our model overcomes the limitation of Smoluchowski model, which More >

  • Open Access

    VIEWPOINT

    Recent Breakthroughs in the Characterization of Abscisic Acid Efflux Transporters: Shedding New Light on Abscisic Acid Dynamics and Regulation

    Ivan Couée*

    Phyton-International Journal of Experimental Botany, Vol.93, No.11, pp. 2707-2714, 2024, DOI:10.32604/phyton.2024.058101 - 30 November 2024

    Abstract The 15-carbon terpenoid abscisic acid (ABA) acts in vascular plants as a versatile hormone playing essential roles in reproductive development, vegetative development and growth, stress-development interactions, and physiological responses to abiotic and biotic stresses. Over the past 60 years, ABA dynamics, regulation, and responses have been progressively characterized: synthesis, transport and translocation, conjugation and deconjugation, metabolism, sensing, signal transduction, and downstream responses. In this context, the discovery of ABA exporters and importers has added novel dimensions to the understanding of ABA regulation. Moreover, since the initial discovery of the adenosine triphosphate-binding cassette (ABC) AtABCG25 exporter… More >

  • Open Access

    PROCEEDINGS

    Use of Hybrid-PINNs for Fast Predictions of Transport Structures in the Cz-Melt in Growth of Bulk Silicon Single Crystals

    Yasunori Okano1,*, Tsuyoshi Miyamoto1, Sadik Dost2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011685

    Abstract We have developed a machine learning model, called Hybrid-PINNs (Physics Informed Neural Networks), and applied for fast predictions of transport structures (flow and thermal fields) in the silicon (Si) melt during the Czochralski (Cz) bulk single crystal growth. Si bulk single crystals are mostly grown by the Cz method. For the growth of high-quality Si crystals with this method, it is essential to understand and control these transport structures in the melt. Since the direct observation of such transport fields in the melt during growth is usually impossible, numerical simulations provide a powerful tool for… More >

  • Open Access

    REVIEW

    Discrete Choice Models and Artificial Intelligence Techniques for Predicting the Determinants of Transport Mode Choice—A Systematic Review

    Mujahid Ali*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2161-2194, 2024, DOI:10.32604/cmc.2024.058888 - 18 November 2024

    Abstract Forecasting travel demand requires a grasp of individual decision-making behavior. However, transport mode choice (TMC) is determined by personal and contextual factors that vary from person to person. Numerous characteristics have a substantial impact on travel behavior (TB), which makes it important to take into account while studying transport options. Traditional statistical techniques frequently presume linear correlations, but real-world data rarely follows these presumptions, which may make it harder to grasp the complex interactions. Thorough systematic review was conducted to examine how machine learning (ML) approaches might successfully capture nonlinear correlations that conventional methods may… More >

  • Open Access

    PROCEEDINGS

    Leakage Diffusion and Monitor of Hydrogen-Blended Natural Gas Pipeline in Utility Tunnel

    Pengfei Duan1,*, Luling Li1, Jianhui Liu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012431

    Abstract The supply of hydrogen-blended natural gas to civil and industrial users can assist downstream firm to achieve carbon emission reduction, and ensure energy security as an alternative gas source. This application mode has been widely concerned by urban gas enterprises. This paper focuses on the leakage problem of hydrogen-blended pipelines in utility tunnel due to corrosion and other reasons. Using dimensional analysis method, a model experiment is designed to verify that the three-dimensional compressible fluid model coupled with transport equations can effectively simulate the concentration change of hydrogen-blended natural gas after leakage in the utility… More >

  • Open Access

    REVIEW

    Sodium-Glucose Cotransporter 2 Inhibitors in Adult and Pediatric Congenital Heart Disease: Review of Emerging Data and Future Directions

    William H. Marshall V1,2,*, Lydia K. Wright2

    Congenital Heart Disease, Vol.19, No.4, pp. 419-433, 2024, DOI:10.32604/chd.2024.056608 - 31 October 2024

    Abstract Heart failure (HF) is common in patients with congenital heart disease (CHD) and there are limited medical therapies. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a proven medical therapy in patients with acquired HF, though data are limited in patients with CHD. The aim of this review is to summarize the current evidence for use of SGLT2i in patients with CHD and identify future directions for study. In available publications, SGLT2i in patients with CHD seem to be well tolerated, with similar side effect profile to patients with acquired HF. Improvement in functional capacity and natriuretic More >

  • Open Access

    ARTICLE

    Implementation of a Nesting Repair Technology for Transportation Pipeline Repair

    Yijun Gao1,2, Yong Wang1,*, Qing Na1, Jiawei Zhang1, Aixiang Wu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2443-2458, 2024, DOI:10.32604/fdmp.2024.051385 - 28 October 2024

    Abstract Filling methods in the mining industry can maximize the recovery of mineral resources and protect the underground and surface environments. In recent years, such methods have been widely used in metal mines where pipeline transportation typically plays a decisive role in the safety and stability of the entire filling system. Because the filling slurry contains a large percentage of solid coarse particles, the involved pipeline is typically eroded and often damaged during such a process. A possible solution is the so-called nesting repair technology. In the present study, nesting a 127 mm outer diameter pipeline… More >

  • Open Access

    ARTICLE

    Factors Influencing Proppant Transportation and Hydraulic Fracture Conductivity in Deep Coal Methane Reservoirs

    Fan Yang1,2,*, Honggang Mi1,2, Jian Wu1,2, Qi Yang1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2637-2656, 2024, DOI:10.32604/fdmp.2024.048574 - 28 October 2024

    Abstract The gas production of deep coalbed methane wells in Linxing-Shenfu block decreases rapidly, the water output is high, the supporting effect is poor, the effective supporting fracture size is limited, and the migration mechanism of proppant in deep coal reservoir is not clear at present. To investigate the migration behavior of proppants in complex fractures during the volume reconstruction of deep coal and rock reservoirs, an optimization test on the conductivity of low-density proppants and simulations of proppant migration in complex fractures of deep coal reservoirs were conducted. The study systematically analyzed the impact of… More >

  • Open Access

    ARTICLE

    Demand-Responsive Transportation Vehicle Routing Optimization Based on Two-Stage Method

    Jingfa Ma, Hu Liu*, Lingxiao Chen

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 443-469, 2024, DOI:10.32604/cmc.2024.056209 - 15 October 2024

    Abstract Demand-responsive transportation (DRT) is a flexible passenger service designed to enhance road efficiency, reduce peak-hour traffic, and boost passenger satisfaction. However, existing optimization methods for initial passenger requests fall short in addressing real-time passenger needs. Consequently, there is a need to develop real-time DRT route optimization methods that integrate both initial and real-time requests. This paper presents a two-stage, multi-objective optimization model for DRT vehicle scheduling. The first stage involves an initial scheduling model aimed at minimizing vehicle configuration, and operational, and CO2 emission costs while ensuring passenger satisfaction. The second stage develops a real-time scheduling… More >

Displaying 21-30 on page 3 of 236. Per Page