Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access


    Surface activity of cancer cells: The fusion of two cell aggregates


    BIOCELL, Vol.47, No.1, pp. 15-25, 2023, DOI:10.32604/biocell.2023.023469

    Abstract A key feature that distinguishes cancer cells from all other cells is their capability to spread throughout the body. Although how cancer cells collectively migrate by following molecular rules which influence the state of cell-cell adhesion contacts has been comprehensively formulated, the impact of physical interactions on cell spreading remains less understood. Cumulative effects of physical interactions exist as the interplay between various physical parameters such as (1) tissue surface tension, (2) viscoelasticity caused by collective cell migration, and (3) solid stress accumulated in the cell aggregate core region. This review aims to point out the role of these physical… More >

  • Open Access


    Intratree Variation in Viscoelastic Properties of Cell Walls of Masson Pine (Pinus Massoniana Lamb)

    Shaoxiang Cai1, Yuliang Guo1, Yanjun Li2,*

    Journal of Renewable Materials, Vol.10, No.1, pp. 119-133, 2022, DOI:10.32604/jrm.2022.016260

    Abstract In this study, Pinus massoniana Lamb at different heights, across the annual rings, and between earlywood and latewood was measured by X-ray diffraction and the chemical composition was analyzed by chemical treatment. Results indicated that the microfibril angle (MFA) decreased and the chemical composition changed little with the increase in height from 1 m to 9 m. In the radial direction, the MFA decreased and the chemical composition changed little with an increase in annual rings. The cellulose content of latewood was higher than that of earlywood. The viscoelastic changes of wood cell walls at different heights, across the annual rings by… More >

  • Open Access


    Inverse Analysis of Viscoelastic Material Properties Considering Time- and Temperature-Dependence of Poisson’s Ratio

    Shotaro Taguchi1,*, Satoru Yoneyama2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 20-20, 2021, DOI:10.32604/icces.2021.08535

    Abstract This study proposes a method for identifying viscoelastic properties that considers time- and temperature dependence of Poisson's ratio using inverse analysis. In this method, displacement distribution, which are input values of inverse analysis, is measured by digital image correlation [1], and unknown material properties are determined using the virtual fields method [2]. This method targets plane stress condition and the Poisson's ratio of the viscoelastic body depends on the time and temperature [3]. This study focuses on the correspondence law and proposes a method for calculating stresses considering time- and temperature dependence of Poisson's ratio. In-plane strains are measured and… More >

  • Open Access


    Viscoelasticity of Bone Cells Exposed to Fluid Flow

    R. Y. Kwon1, C. R. Jacobs1

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 209-209, 2006, DOI:10.32604/mcb.2006.003.209

    Abstract This article has no abstract. More >

  • Open Access


    Viscoelasticity of Living Materials: Mechanics and Chemistry of Muscle as an Active Macromolecular System

    Hong Qian*

    Molecular & Cellular Biomechanics, Vol.5, No.2, pp. 107-118, 2008, DOI:10.3970/mcb.2008.005.107

    Abstract At the molecular and cellular level, mechanics and chemistry are two aspects of the same macromolecular system. We present a bottom-up approach to such systems based on Kramers' diffusion theory of chemical reactions, the theory of polymer dynamics, and the recently developed models for molecular motors. Using muscle as an example, we develop a viscoelastic theory of muscle in terms of an simple equation for single motor protein movement. Both A.V. Hill's contractile component and A.F. Huxley's equation of sliding-filament motion are shown to be special cases of the general viscoelastic theory of the active material. Some disparity between the… More >

  • Open Access


    A 3-D Visco-Hyperelastic Constitutive Model for Rubber with Damage for Finite Element Simulation

    Ala Tabiei1, Suraush Khambati2

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.1, pp. 25-45, 2015, DOI:10.3970/cmes.2015.105.025

    Abstract A constitutive model to describe the behavior of rubber from low to high strain rates is presented. For loading, the primary hyperelastic behavior is characterized by the six parameter Ogden’s strain-energy potential of the third order. The rate-dependence is captured by the nonlinear second order BKZ model using another five parameters, having two relaxation times. For unloading, a single parameter model has been presented to define Hysteresis or continuous damage, while Ogden’s two term model has been used to capture Mullin’s effect or discontinuous damage. Lastly, the Feng-Hallquist failure surface dictates the ultimate failure for element deletion. The proposed model… More >

  • Open Access


    A Three-Dimensional Constitutive Equation And Finite Element Method Implementation for Shape Memory Polymers

    Guanghui Shi1, Qingsheng Yang1,2, Xiaoqiao He3,4, Kim Meow Liew3

    CMES-Computer Modeling in Engineering & Sciences, Vol.90, No.5, pp. 339-358, 2013, DOI:10.3970/cmes.2013.090.339

    Abstract In order to describe the thermomechanical deformation and shape memory effect of shape memory polymers (SMPs), a three-dimensional thermomechanical constitutive model that considers elastic, viscoelastic strain and thermal expansion is proposed for isotropic SMPs. A three-dimensional finite element procedure is developed by implementing the proposed constitutive model into the user material subroutine (UMAT) in ABAQUS program. Numerical examples are used to compare it with existing experimental data in a one dimensional case and to demonstrate the thermomechanical behavior of SMPs with 3D deformation. It is shown that the present constitutive theory and the finite element method can effectively simulate the… More >

  • Open Access


    Implementation of a Parallel Dual Reciprocity Boundary Element Method for the Solution of Coupled Thermoelasticity and Thermoviscoelasticity Problems

    M. Koyuncu1, F. Y. Ikikat1, G. C. Icoz2, B. Baranoglu3, A. Yazici2

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.1, pp. 13-26, 2012, DOI:10.3970/cmes.2012.084.013

    Abstract A parallel dual reciprocity boundary element method solution to thermoelasticity and thermoviscoelasticity problems is proposed. The DR-BEM formulation is given in Fourier Transform Space where the Time Space solutions are obtained through inverse Fourier Transform. The parallellization of the code is achieved through solving each frequency at a distinct computational node. The implemented parallel code is tested on 64-core IBM blade servers and it is seen that a linear speed-up is achieved. More >

  • Open Access


    The Trefftz Boundary Method in Viscoelasticity

    Berardi Sensale Cozzano1, Berardi Sensale Rodríguez2

    CMES-Computer Modeling in Engineering & Sciences, Vol.20, No.1, pp. 21-34, 2007, DOI:10.3970/cmes.2007.020.021

    Abstract In this paper, the Trefftz method is applied to solve linear viscoelasticity problems in the time domain, using Trefftz elastic series and considering the viscoelastic components in each time domain as fictitious body forces. The direct application of the Trefftz method to elastic problems is typically constrained to those cases in which the Navier equation is homogeneous. In the presence of body forces, the method of the particular solution or the method of the generalized particular solution should be used, depending on whether the body forces are constant or not inside the considered domain. Many viscoelasticity problems with or without… More >

  • Open Access


    Effect of Suspended Particles on the Onset of Thermal Convection in a Compressible Viscoelastic Fluid in a Darcy-Brinkman Porous Medium

    G. C. Rana1, R. C. Thakur2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.3, pp. 251-265, 2013, DOI:10.3970/fdmp.2013.009.251

    Abstract In this paper, the effect of suspended particles on thermal convection in a compressible viscoelastic fluid hosted in a porous medium is considered. For the porous medium, the Brinkman model is employed with the Rivlin-Ericksen approach used in parallel to describe the rheological behaviour of the viscoelastic fluid. By applying a normal mode analysis method, a dispersion relation is derived and solved analytically. It is observed that the medium permeability, suspended particles, gravity field and viscoelasticity introduce oscillatory modes. For stationary convection, it is found that the Darcy-Brinkman number has a stabilizing effect whereas the suspended particles and medium permeability… More >

Displaying 1-10 on page 1 of 13. Per Page  

Share Link