Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    Effect of Suspended Particles on the Onset of Thermal Convection in a Compressible Viscoelastic Fluid in a Darcy-Brinkman Porous Medium

    G. C. Rana1, R. C. Thakur2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.3, pp. 251-265, 2013, DOI:10.3970/fdmp.2013.009.251

    Abstract In this paper, the effect of suspended particles on thermal convection in a compressible viscoelastic fluid hosted in a porous medium is considered. For the porous medium, the Brinkman model is employed with the Rivlin-Ericksen approach used in parallel to describe the rheological behaviour of the viscoelastic fluid. By applying a normal mode analysis method, a dispersion relation is derived and solved analytically. It is observed that the medium permeability, suspended particles, gravity field and viscoelasticity introduce oscillatory modes. For stationary convection, it is found that the Darcy-Brinkman number has a stabilizing effect whereas the More >

  • Open Access

    ARTICLE

    Identification of Parameters of a Nonlinear Material Model Considering the Effects of Viscoelasticity and Damage

    Jan Heczko1, Radek Kottner2, Tomáš Kroupa2

    CMC-Computers, Materials & Continua, Vol.33, No.3, pp. 257-273, 2013, DOI:10.3970/cmc.2013.033.257

    Abstract This work deals with mechanical properties of a rubber material that is used in modern tram wheels as a damping element. Nonlinear static response as well as strain softening and hysteresis are captured in the material model that is selected. Method of identification of the model's parameters is developed. The identification method relies on successive minimizations with respect to different sets of parameters. Tests in tension, compression and simple shear are performed. Parameters of the material model are identified based on the tension and compression data, while the shear data are used for validation only. More >

  • Open Access

    ARTICLE

    Implementation of a Parallel Dual Reciprocity Boundary Element Method for the Solution of Coupled Thermoelasticity and Thermoviscoelasticity Problems

    M. Koyuncu1, F. Y. Ikikat1, G. C. Icoz2, B. Baranoglu3, A. Yazici2

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.1, pp. 13-26, 2012, DOI:10.3970/cmes.2012.084.013

    Abstract A parallel dual reciprocity boundary element method solution to thermoelasticity and thermoviscoelasticity problems is proposed. The DR-BEM formulation is given in Fourier Transform Space where the Time Space solutions are obtained through inverse Fourier Transform. The parallellization of the code is achieved through solving each frequency at a distinct computational node. The implemented parallel code is tested on 64-core IBM blade servers and it is seen that a linear speed-up is achieved. More >

  • Open Access

    ARTICLE

    Application of Cosserat Theory to the Modelling of Reinforced Carbon Nananotube Beams

    Veturia Chiroiu1, Ligia Munteanu2 and Antonio S. Gliozzi3

    CMC-Computers, Materials & Continua, Vol.19, No.1, pp. 1-16, 2010, DOI:10.3970/cmc.2010.019.001

    Abstract This paper develops a mechanical model for multifunctional reinforced carbon nanotube (CNT) beams. The model is obtained by introducing the couple stresses into the constitutive equations of linear viscoelastic theory. The material functions are determined using the homogenization method. More >

  • Open Access

    ARTICLE

    Viscoelasticity of Living Materials: Mechanics and Chemistry of Muscle as an Active Macromolecular System

    Hong Qian*

    Molecular & Cellular Biomechanics, Vol.5, No.2, pp. 107-118, 2008, DOI:10.3970/mcb.2008.005.107

    Abstract At the molecular and cellular level, mechanics and chemistry are two aspects of the same macromolecular system. We present a bottom-up approach to such systems based on Kramers' diffusion theory of chemical reactions, the theory of polymer dynamics, and the recently developed models for molecular motors. Using muscle as an example, we develop a viscoelastic theory of muscle in terms of an simple equation for single motor protein movement. Both A.V. Hill's contractile component and A.F. Huxley's equation of sliding-filament motion are shown to be special cases of the general viscoelastic theory of the active More >

  • Open Access

    ARTICLE

    The Trefftz Boundary Method in Viscoelasticity

    Berardi Sensale Cozzano1, Berardi Sensale Rodríguez2

    CMES-Computer Modeling in Engineering & Sciences, Vol.20, No.1, pp. 21-34, 2007, DOI:10.3970/cmes.2007.020.021

    Abstract In this paper, the Trefftz method is applied to solve linear viscoelasticity problems in the time domain, using Trefftz elastic series and considering the viscoelastic components in each time domain as fictitious body forces. The direct application of the Trefftz method to elastic problems is typically constrained to those cases in which the Navier equation is homogeneous. In the presence of body forces, the method of the particular solution or the method of the generalized particular solution should be used, depending on whether the body forces are constant or not inside the considered domain. Many More >

  • Open Access

    ARTICLE

    Viscoelasticity of Bone Cells Exposed to Fluid Flow

    R. Y. Kwon1, C. R. Jacobs1

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 209-209, 2006, DOI:10.32604/mcb.2006.003.209

    Abstract This article has no abstract. More >

Displaying 11-20 on page 2 of 17. Per Page