Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (43)
  • Open Access

    ARTICLE

    Deep Auto-Encoder Based Intelligent and Secure Time Synchronization Protocol (iSTSP) for Security-Critical Time-Sensitive WSNs

    Ramadan Abdul-Rashid1, Mohd Amiruddin Abd Rahman1,*, Abdulaziz Yagoub Barnawi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3213-3250, 2025, DOI:10.32604/cmes.2025.066589 - 30 September 2025

    Abstract Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks (WSNs), especially in security-critical, time-sensitive applications. However, most existing protocols degrade substantially under malicious interference. We introduce iSTSP, an Intelligent and Secure Time Synchronization Protocol that implements a four-stage defense pipeline to ensure robust, precise synchronization even in hostile environments: (1) trust preprocessing that filters node participation using behavioral trust scoring; (2) anomaly isolation employing a lightweight autoencoder to detect and excise malicious nodes in real time; (3) reliability-weighted consensus that prioritizes high-trust nodes during time aggregation; and (4) convergence-optimized synchronization… More >

  • Open Access

    ARTICLE

    Sine-Polynomial Chaotic Map (SPCM): A Decent Cryptographic Solution for Image Encryption in Wireless Sensor Networks

    David S. Bhatti1,*, Annas W. Malik2, Haeung Choi1, Ki-Il Kim3,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 2157-2177, 2025, DOI:10.32604/cmc.2025.068360 - 29 August 2025

    Abstract Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies, limiting their use for lightweight, secure image encryption in resource-constrained Wireless Sensor Networks (WSNs). We propose the SPCM, a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions, leveraging a piecewise function to achieve a broad chaotic range () and a high Lyapunov exponent (5.04). Validated through nine benchmarks, including standard randomness tests, Diehard tests, and Shannon entropy (3.883), SPCM demonstrates superior randomness and high sensitivity to initial conditions. Applied to image encryption, SPCM achieves 0.152582 s (39% faster than some techniques) and 433.42 More >

  • Open Access

    ARTICLE

    An Energy-Efficient Cross-Layer Clustering Approach Based on Gini Index Theory for WSNs

    Deyu Lin1,2, Yujie Zhang 2, Zhiwei Hua2, Jianfeng Xu2,3,*, Yufei Zhao1, Yong Liang Guan1

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1859-1882, 2025, DOI:10.32604/cmc.2025.066283 - 29 August 2025

    Abstract Energy efficiency is critical in Wireless Sensor Networks (WSNs) due to the limited power supply. While clustering algorithms are commonly used to extend network lifetime, most of them focus on single-layer optimization. To this end, an Energy-efficient Cross-layer Clustering approach based on the Gini (ECCG) index theory was proposed in this paper. Specifically, a novel mechanism of Gini Index theory-based energy-efficient Cluster Head Election (GICHE) is presented based on the Gini Index and the expected energy distribution to achieve balanced energy consumption among different clusters. In addition, to improve inter-cluster energy efficiency, a Queue synchronous More >

  • Open Access

    ARTICLE

    A Hybrid Framework Integrating Deterministic Clustering, Neural Networks, and Energy-Aware Routing for Enhanced Efficiency and Longevity in Wireless Sensor Network

    Muhammad Salman Qamar1,*, Muhammad Fahad Munir2

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5463-5485, 2025, DOI:10.32604/cmc.2025.064442 - 30 July 2025

    Abstract Wireless Sensor Networks (WSNs) have emerged as crucial tools for real-time environmental monitoring through distributed sensor nodes (SNs). However, the operational lifespan of WSNs is significantly constrained by the limited energy resources of SNs. Current energy efficiency strategies, such as clustering, multi-hop routing, and data aggregation, face challenges, including uneven energy depletion, high computational demands, and suboptimal cluster head (CH) selection. To address these limitations, this paper proposes a hybrid methodology that optimizes energy consumption (EC) while maintaining network performance. The proposed approach integrates the Low Energy Adaptive Clustering Hierarchy with Deterministic (LEACH-D) protocol using More >

  • Open Access

    ARTICLE

    Deep Q-Learning Driven Protocol for Enhanced Border Surveillance with Extended Wireless Sensor Network Lifespan

    Nimisha Rajput1,#, Amit Kumar1, Raghavendra Pal1,#, Nishu Gupta2,*, Mikko Uitto2, Jukka Mäkelä2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3839-3859, 2025, DOI:10.32604/cmes.2025.065903 - 30 June 2025

    Abstract Wireless Sensor Networks (WSNs) play a critical role in automated border surveillance systems, where continuous monitoring is essential. However, limited energy resources in sensor nodes lead to frequent network failures and reduced coverage over time. To address this issue, this paper presents an innovative energy-efficient protocol based on deep Q-learning (DQN), specifically developed to prolong the operational lifespan of WSNs used in border surveillance. By harnessing the adaptive power of DQN, the proposed protocol dynamically adjusts node activity and communication patterns. This approach ensures optimal energy usage while maintaining high coverage, connectivity, and data accuracy. More >

  • Open Access

    ARTICLE

    An Enhanced Fuzzy Routing Protocol for Energy Optimization in the Underwater Wireless Sensor Networks

    Mehran Tarif1, Mohammadhossein Homaei2,*, Amir Mosavi3,4,5

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 1791-1820, 2025, DOI:10.32604/cmc.2025.063962 - 16 April 2025

    Abstract Underwater Wireless Sensor Networks (UWSNs) are gaining popularity because of their potential uses in oceanography, seismic activity monitoring, environmental preservation, and underwater mapping. Yet, these networks are faced with challenges such as self-interference, long propagation delays, limited bandwidth, and changing network topologies. These challenges are coped with by designing advanced routing protocols. In this work, we present Under Water Fuzzy-Routing Protocol for Low power and Lossy networks (UWF-RPL), an enhanced fuzzy-based protocol that improves decision-making during path selection and traffic distribution over different network nodes. Our method extends RPL with the aid of fuzzy logic More >

  • Open Access

    ARTICLE

    Fuzzy Decision-Based Clustering for Efficient Data Aggregation in Mobile UWSNs

    Aadil Mushtaq Pandith1, Manni Kumar2, Naveen Kumar3, Nitin Goyal4,*, Sachin Ahuja2, Yonis Gulzar5, Rashi Rastogi6, Rupesh Gupta7

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 259-279, 2025, DOI:10.32604/cmc.2025.062608 - 26 March 2025

    Abstract Underwater wireless sensor networks (UWSNs) rely on data aggregation to streamline routing operations by merging information at intermediate nodes before transmitting it to the sink. However, many existing data aggregation techniques are designed exclusively for static networks and fail to reflect the dynamic nature of underwater environments. Additionally, conventional multi-hop data gathering techniques often lead to energy depletion problems near the sink, commonly known as the energy hole issue. Moreover, cluster-based aggregation methods face significant challenges such as cluster head (CH) failures and collisions within clusters that degrade overall network performance. To address these limitations,… More >

  • Open Access

    ARTICLE

    Optimization Model Proposal for Traffic Differentiation in Wireless Sensor Networks

    Adisa Hasković Džubur*, Samir Čaušević, Belma Memić, Muhamed Begović, Elma Avdagić-Golub, Alem Čolaković

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1059-1084, 2024, DOI:10.32604/cmc.2024.055386 - 15 October 2024

    Abstract Wireless sensor networks (WSNs) are characterized by heterogeneous traffic types (audio, video, data) and diverse application traffic requirements. This paper introduces three traffic classes following the defined model of heterogeneous traffic differentiation in WSNs. The requirements for each class regarding sensitivity to QoS (Quality of Service) parameters, such as loss, delay, and jitter, are described. These classes encompass real-time and delay-tolerant traffic. Given that QoS evaluation is a multi-criteria decision-making problem, we employed the AHP (Analytical Hierarchy Process) method for multi-criteria optimization. As a result of this approach, we derived weight values for different traffic… More >

  • Open Access

    ARTICLE

    Value Function Mechanism in WSNs-Based Mango Plantation Monitoring System

    Wen-Tsai Sung1, Indra Griha Tofik Isa1,2, Sung-Jung Hsiao3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3733-3759, 2024, DOI:10.32604/cmc.2024.053634 - 12 September 2024

    Abstract Mango fruit is one of the main fruit commodities that contributes to Taiwan’s income. The implementation of technology is an alternative to increasing the quality and quantity of mango plantation product productivity. In this study, a Wireless Sensor Networks (“WSNs”)-based intelligent mango plantation monitoring system will be developed that implements deep reinforcement learning (DRL) technology in carrying out prediction tasks based on three classifications: “optimal,” “sub-optimal,” or “not-optimal” conditions based on three parameters including humidity, temperature, and soil moisture. The key idea is how to provide a precise decision-making mechanism in the real-time monitoring system.… More >

  • Open Access

    ARTICLE

    A Traffic-Aware and Cluster-Based Energy Efficient Routing Protocol for IoT-Assisted WSNs

    Hina Gul1, Sana Ullah1, Ki-Il Kim2,*, Farman Ali3

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1831-1850, 2024, DOI:10.32604/cmc.2024.052841 - 15 August 2024

    Abstract The seamless integration of intelligent Internet of Things devices with conventional wireless sensor networks has revolutionized data communication for different applications, such as remote health monitoring, industrial monitoring, transportation, and smart agriculture. Efficient and reliable data routing is one of the major challenges in the Internet of Things network due to the heterogeneity of nodes. This paper presents a traffic-aware, cluster-based, and energy-efficient routing protocol that employs traffic-aware and cluster-based techniques to improve the data delivery in such networks. The proposed protocol divides the network into clusters where optimal cluster heads are selected among super… More >

Displaying 1-10 on page 1 of 43. Per Page