Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (153)
  • Open Access

    ARTICLE

    Deep Auto-Encoder Based Intelligent and Secure Time Synchronization Protocol (iSTSP) for Security-Critical Time-Sensitive WSNs

    Ramadan Abdul-Rashid1, Mohd Amiruddin Abd Rahman1,*, Abdulaziz Yagoub Barnawi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3213-3250, 2025, DOI:10.32604/cmes.2025.066589 - 30 September 2025

    Abstract Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks (WSNs), especially in security-critical, time-sensitive applications. However, most existing protocols degrade substantially under malicious interference. We introduce iSTSP, an Intelligent and Secure Time Synchronization Protocol that implements a four-stage defense pipeline to ensure robust, precise synchronization even in hostile environments: (1) trust preprocessing that filters node participation using behavioral trust scoring; (2) anomaly isolation employing a lightweight autoencoder to detect and excise malicious nodes in real time; (3) reliability-weighted consensus that prioritizes high-trust nodes during time aggregation; and (4) convergence-optimized synchronization… More >

  • Open Access

    ARTICLE

    Real-Time Communication Driver for MPU Accelerometer Using Predictable Non-Blocking I2C Communication

    Valentin Stangaciu*, Mihai-Vladimir Ghimpau, Adrian-Gabriel Sztanarec

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3213-3229, 2025, DOI:10.32604/cmc.2025.068844 - 23 September 2025

    Abstract Along with process control, perception represents the main function performed by the Edge Layer of an Internet of Things (IoT) network. Many of these networks implement various applications where the response time does not represent an important parameter. However, in critical applications, this parameter represents a crucial aspect. One important sensing device used in IoT designs is the accelerometer. In most applications, the response time of the embedded driver software handling this device is generally not analysed and not taken into account. In this paper, we present the design and implementation of a predictable real-time More >

  • Open Access

    ARTICLE

    Sine-Polynomial Chaotic Map (SPCM): A Decent Cryptographic Solution for Image Encryption in Wireless Sensor Networks

    David S. Bhatti1,*, Annas W. Malik2, Haeung Choi1, Ki-Il Kim3,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 2157-2177, 2025, DOI:10.32604/cmc.2025.068360 - 29 August 2025

    Abstract Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies, limiting their use for lightweight, secure image encryption in resource-constrained Wireless Sensor Networks (WSNs). We propose the SPCM, a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions, leveraging a piecewise function to achieve a broad chaotic range () and a high Lyapunov exponent (5.04). Validated through nine benchmarks, including standard randomness tests, Diehard tests, and Shannon entropy (3.883), SPCM demonstrates superior randomness and high sensitivity to initial conditions. Applied to image encryption, SPCM achieves 0.152582 s (39% faster than some techniques) and 433.42 More >

  • Open Access

    ARTICLE

    An Efficient Clustering Algorithm for Enhancing the Lifetime and Energy Efficiency of Wireless Sensor Networks

    Peng Zhou1,2, Wei Chen1, Bingyu Cao1,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5337-5360, 2025, DOI:10.32604/cmc.2025.065561 - 30 July 2025

    Abstract Wireless Sensor Networks (WSNs), as a crucial component of the Internet of Things (IoT), are widely used in environmental monitoring, industrial control, and security surveillance. However, WSNs still face challenges such as inaccurate node clustering, low energy efficiency, and shortened network lifespan in practical deployments, which significantly limit their large-scale application. To address these issues, this paper proposes an Adaptive Chaotic Ant Colony Optimization algorithm (AC-ACO), aiming to optimize the energy utilization and system lifespan of WSNs. AC-ACO combines the path-planning capability of Ant Colony Optimization (ACO) with the dynamic characteristics of chaotic mapping and… More >

  • Open Access

    ARTICLE

    A Hybrid Framework Integrating Deterministic Clustering, Neural Networks, and Energy-Aware Routing for Enhanced Efficiency and Longevity in Wireless Sensor Network

    Muhammad Salman Qamar1,*, Muhammad Fahad Munir2

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5463-5485, 2025, DOI:10.32604/cmc.2025.064442 - 30 July 2025

    Abstract Wireless Sensor Networks (WSNs) have emerged as crucial tools for real-time environmental monitoring through distributed sensor nodes (SNs). However, the operational lifespan of WSNs is significantly constrained by the limited energy resources of SNs. Current energy efficiency strategies, such as clustering, multi-hop routing, and data aggregation, face challenges, including uneven energy depletion, high computational demands, and suboptimal cluster head (CH) selection. To address these limitations, this paper proposes a hybrid methodology that optimizes energy consumption (EC) while maintaining network performance. The proposed approach integrates the Low Energy Adaptive Clustering Hierarchy with Deterministic (LEACH-D) protocol using More >

  • Open Access

    ARTICLE

    Three-Level Intrusion Detection Model for Wireless Sensor Networks Based on Dynamic Trust Evaluation

    Xiaogang Yuan*, Huan Pei, Yanlin Wu

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5555-5575, 2025, DOI:10.32604/cmc.2025.063537 - 30 July 2025

    Abstract In the complex environment of Wireless Sensor Networks (WSNs), various malicious attacks have emerged, among which internal attacks pose particularly severe security risks. These attacks seriously threaten network stability, data transmission reliability, and overall performance. To effectively address this issue and significantly improve intrusion detection speed, accuracy, and resistance to malicious attacks, this research designs a Three-level Intrusion Detection Model based on Dynamic Trust Evaluation (TIDM-DTE). This study conducts a detailed analysis of how different attack types impact node trust and establishes node models for data trust, communication trust, and energy consumption trust by focusing… More >

  • Open Access

    ARTICLE

    Deep Q-Learning Driven Protocol for Enhanced Border Surveillance with Extended Wireless Sensor Network Lifespan

    Nimisha Rajput1,#, Amit Kumar1, Raghavendra Pal1,#, Nishu Gupta2,*, Mikko Uitto2, Jukka Mäkelä2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3839-3859, 2025, DOI:10.32604/cmes.2025.065903 - 30 June 2025

    Abstract Wireless Sensor Networks (WSNs) play a critical role in automated border surveillance systems, where continuous monitoring is essential. However, limited energy resources in sensor nodes lead to frequent network failures and reduced coverage over time. To address this issue, this paper presents an innovative energy-efficient protocol based on deep Q-learning (DQN), specifically developed to prolong the operational lifespan of WSNs used in border surveillance. By harnessing the adaptive power of DQN, the proposed protocol dynamically adjusts node activity and communication patterns. This approach ensures optimal energy usage while maintaining high coverage, connectivity, and data accuracy. More >

  • Open Access

    ARTICLE

    An Enhanced Fuzzy Routing Protocol for Energy Optimization in the Underwater Wireless Sensor Networks

    Mehran Tarif1, Mohammadhossein Homaei2,*, Amir Mosavi3,4,5

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 1791-1820, 2025, DOI:10.32604/cmc.2025.063962 - 16 April 2025

    Abstract Underwater Wireless Sensor Networks (UWSNs) are gaining popularity because of their potential uses in oceanography, seismic activity monitoring, environmental preservation, and underwater mapping. Yet, these networks are faced with challenges such as self-interference, long propagation delays, limited bandwidth, and changing network topologies. These challenges are coped with by designing advanced routing protocols. In this work, we present Under Water Fuzzy-Routing Protocol for Low power and Lossy networks (UWF-RPL), an enhanced fuzzy-based protocol that improves decision-making during path selection and traffic distribution over different network nodes. Our method extends RPL with the aid of fuzzy logic More >

  • Open Access

    ARTICLE

    A Fuzzy Multi-Objective Framework for Energy Optimization and Reliable Routing in Wireless Sensor Networks via Particle Swarm Optimization

    Medhat A. Tawfeek1,*, Ibrahim Alrashdi1, Madallah Alruwaili2, Fatma M. Talaat3,4

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2773-2792, 2025, DOI:10.32604/cmc.2025.061773 - 16 April 2025

    Abstract Wireless Sensor Networks (WSNs) are one of the best technologies of the 21st century and have seen tremendous growth over the past decade. Much work has been put into its development in various aspects such as architectural attention, routing protocols, location exploration, time exploration, etc. This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments, such as balancing energy consumption, ensuring routing reliability, distributing network load, and selecting the shortest path. Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve… More >

  • Open Access

    ARTICLE

    Efficient Cooperative Target Node Localization with Optimization Strategy Based on RSS for Wireless Sensor Networks

    Xinrong Zhang1, Bo Chang2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5079-5095, 2025, DOI:10.32604/cmc.2025.059469 - 06 March 2025

    Abstract In the RSSI-based positioning algorithm, regarding the problem of a great conflict between precision and cost, a low-power and low-cost synergic localization algorithm is proposed, where effective methods are adopted in each phase of the localization process and fully use the detective information in the network to improve the positioning precision and robustness. In the ranging period, the power attenuation factor is obtained through the wireless channel modeling, and the RSSI value is transformed into distance. In the positioning period, the preferred reference nodes are used to calculate coordinates. In the position optimization period, Taylor… More >

Displaying 1-10 on page 1 of 153. Per Page