Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access


    Nanocelluloses from Eucalyptus Wood Pulp: A Morphological Comparison

    Antonio J. F. Carvalho

    Journal of Renewable Materials, Vol.2, No.2, pp. 118-122, 2014, DOI:10.7569/JRM.2014.634108

    Abstract Two nanocelluloses from eucalyptus, namely microfi brillated cellulose (MFC) and cellulose nanocrystals (CNC), were prepared and compared by transmission electron microscopy (TEM). The MFC fi bers are 20–30 nm wide and are composed of very homogeneous bundles of aligned regular elementary fi brils of 3–5 nm diameter. They show long straight portions and short fl exible zones, attributed to crystalline and amorphous zones, respectively. The needle-shaped CNC was approximately 200 nm long and 10 nm wide in the wider portion. A model for the MFC structure, whose fl exible zones are formed by alignment of More >

  • Open Access


    Foam-Laid Thermoplastic Composites Based on Kraft Lignin and Softwood Pulp

    Antti Ojala1,*, Lisa Wikström1, Kalle Nättinen2, Jani Lehmonen3, Karita Kinnunen-Raudaskoski4

    Journal of Renewable Materials, Vol.2, No.4, pp. 278-284, 2014, DOI:10.7569/JRM.2014.634126

    Abstract This article presents a new method of producing thermomoldable nonwoven materials based on kraft lignin (KL) and softwood kraft pulp (KP). A mixture of starch acetate (SA) and triethyl citrate (TEC) was used as a water insoluble plasticizer for KL. The thermoplastic lignin (TPL) material with the optimized ratio of KL, SA and TEC was prepared in a twin-screw extruder. The TPL compound was ground and mixed with KP fi bers to produce thermoformable sheets using foam-laid technology. The formed webs were compression molded (CM) into plates and mechanically tested. The foam-laid composites had tensile More >

  • Open Access


    Urethane Modified Hydrophobic Compact Wood Pulp Paper for Oil Spill Cleanup: A Preliminary Study

    Gustavo de Souza, Ricardo K. Kramer, Antonio J. F. Carvalho*

    Journal of Renewable Materials, Vol.8, No.10, pp. 1257-1268, 2020, DOI:10.32604/jrm.2020.011906

    Abstract Oil spills and oil/water wastewater are among the great concerns regarding oil pollution. Existing technologies face many limitations and in some cases are responsible for causing secondary pollution, therefore there is as seek for environmental friendly solutions. Biomass, from which celluloses are highlighted, are being employed for oil/water separation or oil absorbents membranes. Usually, these membranes are obtained by freeze drying of CNF (cellulose nano- fibrils) suspensions followed by chemical modification for hydrophobization, which involves expensive process as chemical vapor deposition and expensive reactants as sylanes, turning these processes hardly scalable. Here, we produced a More >

  • Open Access


    Characterization of Manmade and Recycled Cellulosic Fibers for Their Application in Building Materials

    Nadezda Stevulova1,*, Viola Hospodarova1, Adriana Estokova1, Eva Singovszka1, Marian Holub1, Stefan Demcak1, Jaroslav Briancin2, Anton Geffert3, Frantisek Kacik3, Vojtech Vaclavik4, Tomas Dvorsky4

    Journal of Renewable Materials, Vol.7, No.11, pp. 1121-1145, 2019, DOI:10.32604/jrm.2019.07556

    Abstract The aim of this study was to characterize two types of cellulosic fibers obtained from bleached wood pulp and unbleached recycled waste paper with different cellulose content (from 47.4 percent up to 82 percent), to compare and to analyze the potential use of the recycled fibers for building application, such as plastering mortar. Changes in the chemical composition, cellulose crystallinity and degree of polymerization of the fibers were found. The recycled fibers of lower quality showed heterogeneity in the fiber sizes (width and length), and they had greater surface roughness in comparison to high purity… More >

  • Open Access


    Water-Based Processing of Fiberboard of Acrylic Resin Composites Reinforced With Cellulose Wood Pulp and Cellulose Nanofibrils

    Emanoele Maria Santos Chiromito1, Eliane Trovatti2, Antonio Jose Felix Carvalho1,*

    Journal of Renewable Materials, Vol.7, No.5, pp. 403-413, 2019, DOI:10.32604/jrm.2019.01846

    Abstract Despite the great potential of cellulose wood pulp and cellulose nanofibrils as reinforcing filler in thermoplastics, its use is limited due to its tendency to form agglomerates and due to its high hydrophilic character. Here we describe fiberboard composites with high contents of wood pulp or cellulose nanofibrils, and a resin of poly (styrene-methyl-methacrylate-acrylic acid) used as water-based emulsion. Cellulose wood pulp and cellulose nanofibrils were used directly in the form of water suspensions. The method is based on the flocculation of the polymer emulsion followed by agglomeration of a mixture of the polymer emulsion… More >

Displaying 1-10 on page 1 of 5. Per Page