Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4,453)
  • Open Access

    ARTICLE

    Integration of Large Language Models (LLMs) and Static Analysis for Improving the Efficacy of Security Vulnerability Detection in Source Code

    José Armando Santas Ciavatta, Juan Ramón Bermejo Higuera*, Javier Bermejo Higuera, Juan Antonio Sicilia Montalvo, Tomás Sureda Riera, Jesús Pérez Melero

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.074566 - 12 January 2026

    Abstract As artificial Intelligence (AI) continues to expand exponentially, particularly with the emergence of generative pre-trained transformers (GPT) based on a transformer’s architecture, which has revolutionized data processing and enabled significant improvements in various applications. This document seeks to investigate the security vulnerabilities detection in the source code using a range of large language models (LLM). Our primary objective is to evaluate the effectiveness of Static Application Security Testing (SAST) by applying various techniques such as prompt persona, structure outputs and zero-shot. To the selection of the LLMs (CodeLlama 7B, DeepSeek coder 7B, Gemini 1.5 Flash,… More >

  • Open Access

    REVIEW

    A Survey of Federated Learning: Advances in Architecture, Synchronization, and Security Threats

    Faisal Mahmud1, Fahim Mahmud2, Rashedur M. Rahman1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073519 - 12 January 2026

    Abstract Federated Learning (FL) has become a leading decentralized solution that enables multiple clients to train a model in a collaborative environment without directly sharing raw data, making it suitable for privacy-sensitive applications such as healthcare, finance, and smart systems. As the field continues to evolve, the research field has become more complex and scattered, covering different system designs, training methods, and privacy techniques. This survey is organized around the three core challenges: how the data is distributed, how models are synchronized, and how to defend against attacks. It provides a structured and up-to-date review of… More >

  • Open Access

    ARTICLE

    Two-Stage LightGBM Framework for Cost-Sensitive Prediction of Impending Failures of Component X in Scania Trucks

    Si-Woo Kim, Yong Soo Kim*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073492 - 12 January 2026

    Abstract Predictive maintenance (PdM) is vital for ensuring the reliability, safety, and cost efficiency of heavy-duty vehicle fleets. However, real-world sensor data are often highly imbalanced, noisy, and temporally irregular, posing significant challenges to model robustness and deployment. Using multivariate time-series data from Scania trucks, this study proposes a novel PdM framework that integrates efficient feature summarization with cost-sensitive hierarchical classification. First, the proposed last_k_summary method transforms recent operational records into compact statistical and trend-based descriptors while preserving missingness, allowing LightGBM to leverage its inherent split rules without ad-hoc imputation. Then, a two-stage LightGBM framework is developed… More >

  • Open Access

    REVIEW

    AI-Generated Text Detection: A Comprehensive Review of Active and Passive Approaches

    Lingyun Xiang1,*, Nian Li2, Yuling Liu3, Jiayong Hu1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073347 - 12 January 2026

    Abstract The rapid advancement of large language models (LLMs) has driven the pervasive adoption of AI-generated content (AIGC), while also raising concerns about misinformation, academic misconduct, biased or harmful content, and other risks. Detecting AI-generated text has thus become essential to safeguard the authenticity and reliability of digital information. This survey reviews recent progress in detection methods, categorizing approaches into passive and active categories based on their reliance on intrinsic textual features or embedded signals. Passive detection is further divided into surface linguistic feature-based and language model-based methods, whereas active detection encompasses watermarking-based and semantic retrieval-based More >

  • Open Access

    ARTICLE

    MRFNet: A Progressive Residual Fusion Network for Blind Multiscale Image Deblurring

    Wang Zhang1,#, Haozhuo Cao2,#, Qiangqiang Yao1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072948 - 12 January 2026

    Abstract Recent advances in deep learning have significantly improved image deblurring; however, existing approaches still suffer from limited global context modeling, inadequate detail restoration, and poor texture or edge perception, especially under complex dynamic blur. To address these challenges, we propose the Multi-Resolution Fusion Network (MRFNet), a blind multi-scale deblurring framework that integrates progressive residual connectivity for hierarchical feature fusion. The network employs a three-stage design: (1) TransformerBlocks capture long-range dependencies and reconstruct coarse global structures; (2) Nonlinear Activation Free Blocks (NAFBlocks) enhance local detail representation and mid-level feature fusion; and (3) an optimized residual subnetwork… More >

  • Open Access

    ARTICLE

    Design of Virtual Driving Test Environment for Collecting and Validating Bad Weather SiLS Data Based on Multi-Source Images Using DCU with V2X-Car Edge Cloud

    Sun Park*, JongWon Kim

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072865 - 12 January 2026

    Abstract In real-world autonomous driving tests, unexpected events such as pedestrians or wild animals suddenly entering the driving path can occur. Conducting actual test drives under various weather conditions may also lead to dangerous situations. Furthermore, autonomous vehicles may operate abnormally in bad weather due to limitations of their sensors and GPS. Driving simulators, which replicate driving conditions nearly identical to those in the real world, can drastically reduce the time and cost required for market entry validation; consequently, they have become widely used. In this paper, we design a virtual driving test environment capable of More >

  • Open Access

    ARTICLE

    Research on UAV–MEC Cooperative Scheduling Algorithms Based on Multi-Agent Deep Reinforcement Learning

    Yonghua Huo1,2, Ying Liu1,*, Anni Jiang3, Yang Yang3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072681 - 12 January 2026

    Abstract With the advent of sixth-generation mobile communications (6G), space–air–ground integrated networks have become mainstream. This paper focuses on collaborative scheduling for mobile edge computing (MEC) under a three-tier heterogeneous architecture composed of mobile devices, unmanned aerial vehicles (UAVs), and macro base stations (BSs). This scenario typically faces fast channel fading, dynamic computational loads, and energy constraints, whereas classical queuing-theoretic or convex-optimization approaches struggle to yield robust solutions in highly dynamic settings. To address this issue, we formulate a multi-agent Markov decision process (MDP) for an air–ground-fused MEC system, unify link selection, bandwidth/power allocation, and task… More >

  • Open Access

    ARTICLE

    A Real Time YOLO Based Container Grapple Slot Detection and Classification System

    Chen-Chiung Hsieh1,*, Chun-An Chen1, Wei-Hsin Huang2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072514 - 12 January 2026

    Abstract Container transportation is pivotal in global trade due to its efficiency, safety, and cost-effectiveness. However, structural defects—particularly in grapple slots—can result in cargo damage, financial loss, and elevated safety risks, including container drops during lifting operations. Timely and accurate inspection before and after transit is therefore essential. Traditional inspection methods rely heavily on manual observation of internal and external surfaces, which are time-consuming, resource-intensive, and prone to subjective errors. Container roofs pose additional challenges due to limited visibility, while grapple slots are especially vulnerable to wear from frequent use. This study proposes a two-stage automated… More >

  • Open Access

    ARTICLE

    Hybrid Malware Detection Model for Internet of Things Environment

    Abdul Rahaman Wahab Sait1,*, Yazeed Alkhurayyif2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072481 - 12 January 2026

    Abstract Malware poses a significant threat to the Internet of Things (IoT). It enables unauthorized access to devices in the IoT environment. The lack of unique architectural standards causes challenges in developing robust malware detection (MD) models. The existing models demand substantial computational resources. This study intends to build a lightweight MD model to detect anomalies in IoT networks. The authors develop a transformation technique, converting the malware binaries into images. MobileNet V2 is fine-tuned using improved grey wolf optimization (IGWO) to extract crucial features of malicious and benign samples. The ResNeXt model is combined with… More >

  • Open Access

    ARTICLE

    Machine Learning Based Simulation, Synthesis, and Characterization of Zinc Oxide/Graphene Oxide Nanocomposite for Energy Storage Applications

    Tahir Mahmood1,*, Muhammad Waseem Ashraf1,*, Shahzadi Tayyaba2, Muhammad Munir3, Babiker M. A. Abdel-Banat3, Hassan Ali Dinar3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072436 - 12 January 2026

    Abstract Artificial intelligence (AI) based models have been used to predict the structural, optical, mechanical, and electrochemical properties of zinc oxide/graphene oxide nanocomposites. Machine learning (ML) models such as Artificial Neural Networks (ANN), Support Vector Regression (SVR), Multilayer Perceptron (MLP), and hybrid, along with fuzzy logic tools, were applied to predict the different properties like wavelength at maximum intensity (444 nm), crystallite size (17.50 nm), and optical bandgap (2.85 eV). While some other properties, such as energy density, power density, and charge transfer resistance, were also predicted with the help of datasets of 1000 (80:20). In… More >

Displaying 1-10 on page 1 of 4453. Per Page