Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (120)
  • Open Access

    ARTICLE

    On the Robustness of the xy-Zebra-Gauss-Seidel Smoother on an Anisotropic Diffusion Problem

    Michely Laís de Oliveira1,*, Marcio Augusto Villela Pinto2, Simone de Fátima Tomazzoni Gonçalves2, Grazielli Vassoler Rutz3

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.2, pp. 251-270, 2018, DOI:10.31614/cmes.2018.04237

    Abstract Studies of problems involving physical anisotropy are applied in sciences and engineering, for instance, when the thermal conductivity depends on the direction. In this study, the multigrid method was used in order to accelerate the convergence of the iterative methods used to solve this type of problem. The asymptotic convergence factor of the multigrid was determined empirically (computer aided) and also by employing local Fourier analysis (LFA). The mathematical model studied was the 2D anisotropic diffusion equation, in which ε > 0 was the coefficient of a nisotropy. The equation was discretized by the Finite… More >

  • Open Access

    ARTICLE

    Lower Bound Limit Analysis of Anisotropic Soils

    Chunguang Li1, *, Cuihua Li1, 2, Cong Sun3, Hong Zheng1

    CMC-Computers, Materials & Continua, Vol.54, No.1, pp. 21-41, 2018, DOI:10.3970/cmc.2018.054.021

    Abstract Previous approaches can only tackle anisotropic problems with cohesion varying with direction. A novel linearization of the Mohr-Coulomb yield criterion associated with plane strain problem has been achieved by simulating the Mohr’s circle with orientation lines in σ-τ space, which allows for lower bound solution of soils with cohesion and friction coefficient varying with direction. The finite element lower limit analysis formulation using the modified anisotropic yield criterion is then developed. Several examples are given to illustrate the capability and effectiveness of the proposed numerical procedure for computing rigorous lower bounds for anisotropic soils. More >

  • Open Access

    ARTICLE

    Mixed Convection of a Nanofluid in a Vertical Anisotropic Porous Channel with Heated/Cooled Walls

    S. Slama1, H. Kahalerras1, B. Fersadou1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.3, pp. 155-172, 2017, DOI:10.3970/fdmp.2017.013.155

    Abstract A numerical study is conducted to investigate the problem of mixed convection of a nanofluid in a vertical porous channel with one wall heated and the other cooled. The Darcy-Brinkman-Forchheimer model is used to describe the flow in the porous medium, considered as anisotropic in thermal conductivity, and the two-phase approach is adopted to simulate the motion of the nanofluid. The governing equations with the associated boundary conditions are solved by the finite volume method. The parametric study is focused on the variation of the Richardson number Ri, the heat fluxes ratio Rq, the Darcy number… More >

  • Open Access

    ARTICLE

    Rotational Effects on Magneto-Thermoelastic Stoneley, Love and Rayleigh Waves in Fibre-Reinforced Anisotropic General Viscoelastic Media of Higher Order

    A. M. Abd-Alla1, 2, S. M. Abo-Dahab1, 3, Aftab Khan4

    CMC-Computers, Materials & Continua, Vol.53, No.1, pp. 49-72, 2017, DOI:10.3970/cmc.2017.053.052

    Abstract In this paper, we investigated the propagation of the rmo elastic surface waves in fibre-reinforced anisotropic general viscoelastic media of higher order ofnth order, including time rate of strain under the influence of rotation.The general surface wave speed is derived to study the effects of rotation and thermal on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are discussed. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. Our results for viscoelastic of order zero are well More >

  • Open Access

    ARTICLE

    Gyro-Chirality Effect of Bianisotropic Substrate on the Resonant Frequency and Half-power Bandwidth of Rectangular Microstrip Patch Antenna

    CMC-Computers, Materials & Continua, Vol.52, No.2, pp. 123-131, 2016, DOI:10.3970/cmc.2016.052.123

    Abstract In this paper, the gyrotropic bi-anisotropy of the chiral medium in substrate constitutive parameters (xc and hc) of a rectangular microstrip patch antenna is introduced in order to observe its effects on the complex resonant frequency and half-power bandwidth. The analysis is based on the full-wave spectral domain approach using the Moment Method, with sinusoidal type basis functions. The numerical calculations related to the dominant mode have been carried out, and it has been observed that the resonant frequency and the bandwidth are directly linked to the medium chirality. The new results can be considered More >

  • Open Access

    ARTICLE

    Excluded Volumes of Anisotropic Convex Particles in Heterogeneous Media: Theoretical and Numerical Studies

    Wenxiang Xu1,2,3,4, Ganquan Yang5, Peng Lan2, Huaifa Ma1

    CMC-Computers, Materials & Continua, Vol.52, No.1, pp. 25-40, 2016, DOI:10.3970/cmc.2016.052.025

    Abstract Understanding the excluded volume of anisotropic particle is of great importance in the evaluation of continuum percolation and random packing behaviors of soft/hard particle systems in heterogeneous disordered media. In this work, we obtain the excluded volumes of several anisotropic convex particles including prolate spheroids, oblate spheroids, spherocylinders, and Platonic particles, using theoretical and numerical approaches. According to the second virial coefficient, we first present a theoretical scheme for determining the excluded volumes of anisotropic particles. Also, the mean tangent diameters of anisotropic convex particles are formulated by the quantitative stereology. Subsequently, Monte Carlo simulations… More >

  • Open Access

    ARTICLE

    Boundary Element Analysis of Thin Anisotropic Structures by a Self-regularization Scheme

    Y.C. Shiah1, C.L. Tan2,3, Li-Ding Chan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.1, pp. 15-33, 2015, DOI:10.3970/cmes.2015.109.015

    Abstract In the conventional boundary element method (BEM), the presence of singular kernels in the boundary integral equation or integral identities causes serious inaccuracy of the numerical solutions when the source and field points are very close to each other. This situation occurs commonly in elastostatic analysis of thin structures. The numerical inaccuracy issue can be resolved by some regularization process. Very recently, the self-regularization scheme originally proposed by Cruse and Richardson (1996) for 2D stress analysis has been extended and modified by He and Tan (2013) to 3D elastostatics analysis of isotropic bodies. This paper More >

  • Open Access

    ARTICLE

    Experimental Evaluation of Fiber Orientation Based Material Properties of Skeletal Muscle in Tension

    Chetan D. Kuthe, R.V. Uddanwadiker, Alankar Ramteke

    Molecular & Cellular Biomechanics, Vol.11, No.2, pp. 113-128, 2014, DOI:10.3970/mcb.2014.011.113

    Abstract Biomechanical researches are essential to develop new techniques to improve the clinical relevance. Skeletal muscle generates the force which results in the motion of human body, so it is essential to study the mechanical and structural properties of skeletal muscle. Many researchers have carried out mechanical study of skeletal muscle with in-vivo testing. This work aims to examine anisotropic mechanical behavior of skeletal muscle with in vitro test (tensile test). It is important to understand the mechanical and structural behavior of skeletal muscle when it is subjected to external loading; the research aims to determine… More >

  • Open Access

    ARTICLE

    Eshelby Stress Tensor T: a Variety of Conservation Laws for T in Finite Deformation Anisotropic Hyperelastic Solid & Defect Mechanics, and the MLPG-Eshelby Method in Computational Finite Deformation Solid Mechanics-Part I

    Z. D. Han1, S. N. Atluri2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.1, pp. 1-34, 2014, DOI:10.3970/cmes.2014.097.001

    Abstract The concept of a stress tensor [for instance, the Cauchy stress σ, Cauchy (1789-1857); the first Piola-Kirchhoff stress P, Piola (1794-1850), and Kirchhoff (1824-1889); and the second Piola-Kirchhoff stress, S] plays a central role in Newtonian continuum mechanics, through a physical approach based on the conservation laws for linear and angular momenta. The pioneering work of Noether (1882-1935), and the extraordinarily seminal work of Eshelby (1916- 1981), lead to the concept of an “energy-momentum tensor” [Eshelby (1951)]. An alternate form of the “energy-momentum tensor” was also given by Eshelby (1975) by taking the two-point deformation gradient tensor… More >

  • Open Access

    ARTICLE

    The Boundary Integral Equation for 3D General Anisotropic Thermoelasticity

    Y.C. Shiah1, C.L. Tan2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.6, pp. 425-447, 2014, DOI:10.3970/cmes.2014.102.425

    Abstract Green’s functions, or fundamental solutions, are necessary items in the formulation of the boundary integral equation (BIE), the analytical basis of the boundary element method (BEM). In the formulation of the BEM for 3D general anisotropic elasticity, considerable attention has been devoted to developing efficient algorithms for computing these quantities over the years. The mathematical complexity of this Green’s function has also posed an obstacle in the development of this numerical method to treat problems of 3D anisotropic thermoelasticity. This is because thermal effects manifest themselves as an additional domain integral in the integral equation;… More >

Displaying 31-40 on page 4 of 120. Per Page