Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (114)
  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF HEAT TRANSPORT IN A DIRECT METHANOL FUEL CELL WITH ANISOTROPIC GAS DIFFUSION LAYERS

    Zheng Miaoa, Ya-Ling Hea,*, Tian-Shou Zhaob, Wen-Quan Taoa

    Frontiers in Heat and Mass Transfer, Vol.2, No.1, pp. 1-10, 2011, DOI:10.5098/hmt.v2.1.3001

    Abstract A non-isothermal two-phase mass transport model is developed in this paper to investigate the heat generation and transport phenomena in a direct methanol fuel cell with anisotropic gas diffusion layers (GDLs). Thermal contact resistances at the GDL/CL (catalyst layer) and GDL/Rib interfaces, and the deformation of GDLs are considered together with the inherent anisotropy of the GDL. Latent heat effects due to condensation/evaporation of water and methanol between liquid and gas phases are also taken into account. Formulation of the two-phase mass transport across the membrane electrode assembly (MEA) is mainly based on the classical multiphase flow theory in the… More >

  • Open Access

    PROCEEDINGS

    A Phase-Field Fracture Model for Brittle Anisotropic Materials

    Zhiheng Luo1, Lin Chen2, Nan Wang1, Bin Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2022.08813

    Abstract Anisotropy is inherent in many materials, either because of the manufacturing process, or due to their microstructure, and can markedly influence the failure behavior. Anisotropic materials obviously possess both anisotropic elasticity and anisotropic fracture surface energy. Phase-field methods are elegant and mathematically well-grounded, and have become popular for simulating isotropic and anisotropic brittle fracture. Here, we developed a variational phase-field model for strongly anisotropic fracture, which accounts for the anisotropy both in elastic strain energy and in fracture surface energy, and the asymmetric behavior of cracks in traction and in compression. We implement numerically our higher-order phase-field model with mixed… More >

  • Open Access

    PROCEEDINGS

    Anisotropic Mechanical Behaviors of Alsi10Mg Alloy Fabricated by Additive Manufacturing: Experiments and Modeling

    Shi Dai1, Yanping Lian1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010175

    Abstract In recent years, metal additive manufacturing (AM) has gained increasing attention from various industries. However, there are few studies on the thermal deformation behavior of additively manufactured metallic components, which is vital to pushing its applications’ boundary. In this work, we first experimentally investigate the mechanical behavior of AlSi10Mg produced by laser powder bed fusion under different temperatures and strain rates. A crystal plasticity finite element model is adopted to provide insights into the intrinsic deformation mechanisms. The model is validated by comparing it with the flow behaviors and dislocation evolutions observed in experiments at different conditions. The strain distributions… More >

  • Open Access

    ARTICLE

    Medical Image Fusion Based on Anisotropic Diffusion and Non-Subsampled Contourlet Transform

    Bhawna Goyal1,*, Ayush Dogra2, Rahul Khoond1, Dawa Chyophel Lepcha1, Vishal Goyal3, Steven L. Fernandes4

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 311-327, 2023, DOI:10.32604/cmc.2023.038398

    Abstract The synthesis of visual information from multiple medical imaging inputs to a single fused image without any loss of detail and distortion is known as multimodal medical image fusion. It improves the quality of biomedical images by preserving detailed features to advance the clinical utility of medical imaging meant for the analysis and treatment of medical disorders. This study develops a novel approach to fuse multimodal medical images utilizing anisotropic diffusion (AD) and non-subsampled contourlet transform (NSCT). First, the method employs anisotropic diffusion for decomposing input images to their base and detail layers to coarsely split two features of input… More >

  • Open Access

    ARTICLE

    Static Analysis of Anisotropic Doubly-Curved Shell Subjected to Concentrated Loads Employing Higher Order Layer-Wise Theories

    Francesco Tornabene*, Matteo Viscoti, Rossana Dimitri

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1393-1468, 2023, DOI:10.32604/cmes.2022.022237

    Abstract In the present manuscript, a Layer-Wise (LW) generalized model is proposed for the linear static analysis of doublycurved shells constrained with general boundary conditions under the influence of concentrated and surface loads. The unknown field variable is modelled employing polynomials of various orders, each of them defined within each layer of the structure. As a particular case of the LW model, an Equivalent Single Layer (ESL) formulation is derived too. Different approaches are outlined for the assessment of external forces, as well as for non-conventional constraints. The doubly-curved shell is composed by superimposed generally anisotropic laminae, each of them characterized… More >

  • Open Access

    ARTICLE

    Static Analysis of Doubly-Curved Shell Structures of Smart Materials and Arbitrary Shape Subjected to General Loads Employing Higher Order Theories and Generalized Differential Quadrature Method

    Francesco Tornabene*, Matteo Viscoti, Rossana Dimitri

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.3, pp. 719-798, 2022, DOI:10.32604/cmes.2022.022210

    Abstract The article proposes an Equivalent Single Layer (ESL) formulation for the linear static analysis of arbitrarily-shaped shell structures subjected to general surface loads and boundary conditions. A parametrization of the physical domain is provided by employing a set of curvilinear principal coordinates. The generalized blending methodology accounts for a distortion of the structure so that disparate geometries can be considered. Each layer of the stacking sequence has an arbitrary orientation and is modelled as a generally anisotropic continuum. In addition, re-entrant auxetic three-dimensional honeycomb cells with soft-core behaviour are considered in the model. The unknown variables are described employing a… More > Graphic Abstract

    Static Analysis of Doubly-Curved Shell Structures of Smart Materials and Arbitrary Shape Subjected to General Loads Employing Higher Order Theories and Generalized Differential Quadrature Method

  • Open Access

    ARTICLE

    The Improved Element-Free Galerkin Method for Anisotropic Steady-State Heat Conduction Problems

    Heng Cheng1, Zebin Xing1, Miaojuan Peng2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.3, pp. 945-964, 2022, DOI:10.32604/cmes.2022.020755

    Abstract In this paper, we considered the improved element-free Galerkin (IEFG) method for solving 2D anisotropic steady-state heat conduction problems. The improved moving least-squares (IMLS) approximation is used to establish the trial function, and the penalty method is applied to enforce the boundary conditions, thus the final discretized equations of the IEFG method for anisotropic steady-state heat conduction problems can be obtained by combining with the corresponding Galerkin weak form. The influences of node distribution, weight functions, scale parameters and penalty factors on the computational accuracy of the IEFG method are analyzed respectively, and these numerical solutions show that less computational… More >

  • Open Access

    ARTICLE

    An Ophthalmic Evaluation of Central Serous Chorioretinopathy

    L. K. Shoba1,*, P. Mohan Kumar2

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 613-628, 2023, DOI:10.32604/csse.2023.024449

    Abstract Nowadays in the medical field, imaging techniques such as Optical Coherence Tomography (OCT) are mainly used to identify retinal diseases. In this paper, the Central Serous Chorio Retinopathy (CSCR) image is analyzed for various stages and then compares the difference between CSCR before as well as after treatment using different application methods. The first approach, which was focused on image quality, improves medical image accuracy. An enhancement algorithm was implemented to improve the OCT image contrast and denoise purpose called Boosted Anisotropic Diffusion with an Unsharp Masking Filter (BADWUMF). The classifier used here is to figure out whether the OCT… More >

  • Open Access

    ARTICLE

    Extended Speckle Reduction Anisotropic Diffusion Filter to Despeckle Ultrasound Images

    P. L. Joseph Raj, K. Kalimuthu*, Sabitha Gauni, C. T. Manimegalai

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 1187-1196, 2022, DOI:10.32604/iasc.2022.026052

    Abstract Speckle Reduction Anisotropic Diffusion filter which is used to despeckle ultrasound images, perform well at homogeneous region than in heterogeneous region resulting in loss of information available at the edges. Extended SRAD filter does the same, preserving better the edges in addition, compared to the existing SRAD filter. The proposed Extended SRAD filter includes the intensity of four more neighboring pixels in addition with other four that is meant for SRAD filter operation. So, a total of eight pixels are involved in determining the intensity of a single pixel. This improves despeckling performance by maintaining the information accessible at an… More >

  • Open Access

    ARTICLE

    The Method of Fundamental Solutions for Two-Dimensional Elastostatic Problems with Stress Concentration and Highly Anisotropic Materials

    M. R. Hematiyan1,*, B. Jamshidi1, M. Mohammadi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1349-1369, 2022, DOI:10.32604/cmes.2022.018235

    Abstract The method of fundamental solutions (MFS) is a boundary-type and truly meshfree method, which is recognized as an efficient numerical tool for solving boundary value problems. The geometrical shape, boundary conditions, and applied loads can be easily modeled in the MFS. This capability makes the MFS particularly suitable for shape optimization, moving load, and inverse problems. However, it is observed that the standard MFS lead to inaccurate solutions for some elastostatic problems with stress concentration and/or highly anisotropic materials. In this work, by a numerical study, the important parameters, which have significant influence on the accuracy of the MFS for… More >

Displaying 1-10 on page 1 of 114. Per Page