Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (114)
  • Open Access

    ARTICLE

    An Alternating Iterative MFS Algorithm for the Cauchy Problem in Two-Dimensional Anisotropic Heat Conduction

    LiviuMarin 1

    CMC-Computers, Materials & Continua, Vol.12, No.1, pp. 71-100, 2009, DOI:10.3970/cmc.2009.012.071

    Abstract In this paper, the alternating iterative algorithm originally proposed by Kozlov, Maz'ya and Fomin (1991) is numerically implemented for the Cauchy problem in anisotropic heat conduction using a meshless method. Every iteration of the numerical procedure consists of two mixed, well-posed and direct problems which are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method. For each direct problem considered, the optimal value of the regularization parameter is chosen according to the generalized cross-validation (GCV) criterion. An efficient regularizing stopping criterion which ceases the iterative procedure at the point More >

  • Open Access

    ARTICLE

    Interfaces Between two Dissimilar Elastic Materials

    Chyanbin Hwu1, T.L. Kuo, Y.C. Chen

    CMC-Computers, Materials & Continua, Vol.11, No.3, pp. 165-184, 2009, DOI:10.3970/cmc.2009.011.165

    Abstract In this paper the near tip solutions for interface corners written in terms of the stress intensity factors are presented in a unified expression. This single expression is applicable for any kinds of interface corners including corners and cracks in homogeneous materials as well as interface corners and interface cracks lying between two dissimilar materials, in which the materials can be any kinds of linear elastic anisotropic materials or piezoelectric materials. Through this unified expression of near tip solutions, the singular orders of stresses and their associated stress/electric intensity factors for different kinds of interface More >

  • Open Access

    ARTICLE

    Boundary Element Analysis of Cracked Thick Plates Repaired with Adhesively Bonded Composite Patches

    J. Useche, P. Sollero, E.L. Albuquerque1, L. Palermo2

    Structural Durability & Health Monitoring, Vol.4, No.2, pp. 107-116, 2008, DOI:10.3970/sdhm.2008.004.107

    Abstract The fracture analysis of cracked thick plates repaired with adhesively bonded composite patches using a boundary element formulation is presented. The shear deformable cracked isotropic plate was modeled using the dual boundary method. In order to model the repair, a three parameter boundary element formulation was established. This formulation is based on Kirchhoff's theory for symmetric layer composite plates and considers the transversal deflection and two in-plane rotations. Interaction forces and moments between the cracked plate and the composite repair were modeled as distributed loading, and discretized using continuous and semi-discontinuous domain cells. Coupling equations, More >

  • Open Access

    ABSTRACT

    Modal Analysis Technique for Anisotropic Composite Laminates

    G.M. Mota1, P. Sollero1, F.B. Batista1, E.L. Albuquerque1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.7, No.2, pp. 95-100, 2008, DOI:10.3970/icces.2008.007.095

    Abstract Nowadays, the experimental modal analysis in composite materials is an important tool in the structural analysis of new designs in aircraft structures. It supplies data on the behavior of these materials and, when associated with numerical methods, it can also be used to identify elastic properties. However, lightweight composite materials demand the use of appropriate techniques and devices. This paper describes an experimental modal analysis technique where the response is measured without physical contact in a large number of points using a Laser Doopler Vibrometer (LDV), and the excitation is carried out on a single More >

  • Open Access

    ARTICLE

    A Variational Formulation of a Stabilized Unsplit Convolutional Perfectly Matched Layer for The Isotropic or Anisotropic Seismic Wave Equation

    R. Martin1, D. Komatitsch1,2, S. D. Gedney3

    CMES-Computer Modeling in Engineering & Sciences, Vol.37, No.3, pp. 274-304, 2008, DOI:10.3970/cmes.2008.037.274

    Abstract In the context of the numerical simulation of seismic wave propagation, the perfectly matched layer (PML) absorbing boundary condition has proven to be efficient to absorb surface waves as well as body waves with non grazing incidence. But unfortunately the classical discrete PML generates spurious modes traveling and growing along the absorbing layers in the case of waves impinging the boundary at grazing incidence. This is significant in the case of thin mesh slices, or in the case of sources located close to the absorbing boundaries or receivers located at large offset. In previous work… More >

  • Open Access

    ARTICLE

    Evaluation of Explicit-form Fundamental Solutions for Displacements and Stresses in 3D Anisotropic Elastic Solids

    Y. C. Shiah1, C. L. Tan2, V.G. Lee3

    CMES-Computer Modeling in Engineering & Sciences, Vol.34, No.3, pp. 205-226, 2008, DOI:10.3970/cmes.2008.034.205

    Abstract The main impediment to the development of efficient algorithms for the stress analysis of 3D generally anisotropic elastic solids using the boundary element method (BEM) and the local boundary integral equation (LBIE) meshless method over the years is the complexity of the fundamental solutions and the computational burden to evaluate them. The ability to analytically simplify and reduce them into as explicit a form as possible so that they can be directly computed will offer significant cost savings. In addition, they facilitate easy implementation using existing numerical algorithms with the above-mentioned methods that have been More >

  • Open Access

    ARTICLE

    Nonlinear Dynamical Analysis of Cavitation in Anisotropic Incompressible Hyperelastic Spheres under Periodic Step Loads

    X.G. Yuan1,2, H.W. Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.32, No.3, pp. 175-184, 2008, DOI:10.3970/cmes.2008.032.175

    Abstract In this paper, a dynamic problem that describes void formation and motion in an incompressible hyperelastic solid sphere composed of a transversely isotropic Valanis-Landel material is examined, where the sphere is subjected to a class of periodic step tensile loads on its surface. A motion equation of void is derived. On analyzing the dynamical properties of the motion equation and examining the effect of material anisotropy on void formation and motion in the sphere, we obtain some new and interesting results. Firstly, under a constant surface tensile load, it is proved that a void would More >

  • Open Access

    ARTICLE

    Analysis of Transient Heat Conduction in 3D Anisotropic Functionally Graded Solids, by the MLPG Method

    J. Sladek1, V. Sladek1, C.L. Tan2, S.N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.32, No.3, pp. 161-174, 2008, DOI:10.3970/cmes.2008.032.161

    Abstract A meshless method based on the local Petrov-Galerkin approach is proposed for the solution of steady-state and transient heat conduction problems in a continuously non-homogeneous anisotropic medium. The Laplace transform is used to treat the time dependence of the variables for transient problems. The analyzed domain is covered by small subdomains with a simple geometry. A weak formulation for the set of governing equations is transformed into local integral equations on local subdomains by using a unit test function. Nodal points are randomly distributed in the 3D analyzed domain and each node is surrounded by More >

  • Open Access

    ARTICLE

    The MLPG Mixed Collocation Method for Material Orientation and Topology Optimization of Anisotropic Solids and Structures

    Shu Li1, S. N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.30, No.1, pp. 37-56, 2008, DOI:10.3970/cmes.2008.030.037

    Abstract In this paper, a method based on a combination of an optimization of directions of orthotropy, along with topology optimization, is applied to continuum orthotropic solids with the objective of minimizing their compliance. The spatial discretization algorithm is the so called Meshless Local Petrov-Galerkin (MLPG) "mixed collocation'' method for the design domain, and the material-orthotropy orientation angles and the nodal volume fractions are used as the design variables in material optimization and topology optimization, respectively. Filtering after each iteration diminishes the checkerboard effect in the topology optimization problem. The example results are provided to illustrate More >

  • Open Access

    ARTICLE

    Numerical Identification of the Hydraulic Conductivity of Composite Anisotropic Materials

    S. D. Harris1, R. Mustata2, L. Elliott2, D. B. Ingham2, D. Lesnic2

    CMES-Computer Modeling in Engineering & Sciences, Vol.25, No.2, pp. 69-80, 2008, DOI:10.3970/cmes.2008.025.069

    Abstract Two homogeneous anisotropic materials are butted together to form a contact surface within a single composite material (the specimen). An inverse boundary element method (BEM) is developed to determine the components of the hydraulic conductivity tensor of each material and the position of the contact surface. A steady state flow is forced through the specimen by the application of a constant pressure differential on its opposite faces. Experimental measurements (simulated) of pressure and average hydraulic flux at exposed boundaries are then used in a modified least squares functional. This functional minimises the gap between the More >

Displaying 81-90 on page 9 of 114. Per Page