Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access


    Binary Archimedes Optimization Algorithm for Computing Dominant Metric Dimension Problem

    Basma Mohamed1,*, Linda Mohaisen2, Mohammed Amin1

    Intelligent Automation & Soft Computing, Vol.38, No.1, pp. 19-34, 2023, DOI:10.32604/iasc.2023.031947

    Abstract In this paper, we consider the NP-hard problem of finding the minimum dominant resolving set of graphs. A vertex set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the vertices in B. A resolving set is dominating if every vertex of G that does not belong to B is a neighbor to some vertices in B. The dominant metric dimension of G is the cardinality number of the minimum dominant resolving set. The dominant metric dimension is computed by a binary version of the Archimedes optimization… More >

  • Open Access


    Deep Learning-Based FOPID Controller for Cascaded DC-DC Converters

    S. Hema1,*, Y. Sukhi2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1503-1519, 2023, DOI:10.32604/csse.2023.036577

    Abstract Smart grids and their technologies transform the traditional electric grids to assure safe, secure, cost-effective, and reliable power transmission. Non-linear phenomena in power systems, such as voltage collapse and oscillatory phenomena, can be investigated by chaos theory. Recently, renewable energy resources, such as wind turbines, and solar photovoltaic (PV) arrays, have been widely used for electric power generation. The design of the controller for the direct Current (DC) converter in a PV system is performed based on the linearized model at an appropriate operating point. However, these operating points are ever-changing in a PV system, and the design of the… More >

  • Open Access


    Optimal Deep Canonically Correlated Autoencoder-Enabled Prediction Model for Customer Churn Prediction

    Olfat M. Mirza1, G. Jose Moses2, R. Rajender3, E. Laxmi Lydia4, Seifedine Kadry5, Cheadchai Me-Ead6, Orawit Thinnukool7,*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3757-3769, 2022, DOI:10.32604/cmc.2022.030428

    Abstract Presently, customer retention is essential for reducing customer churn in telecommunication industry. Customer churn prediction (CCP) is important to predict the possibility of customer retention in the quality of services. Since risks of customer churn also get essential, the rise of machine learning (ML) models can be employed to investigate the characteristics of customer behavior. Besides, deep learning (DL) models help in prediction of the customer behavior based characteristic data. Since the DL models necessitate hyperparameter modelling and effort, the process is difficult for research communities and business people. In this view, this study designs an optimal deep canonically correlated… More >

  • Open Access


    Enhanced Archimedes Optimization Algorithm for Clustered Wireless Sensor Networks

    E. Laxmi Lydia1, T. M. Nithya2, K. Vijayalakshmi3, Jeya Prakash Kadambaajan4, Gyanendra Prasad Joshi5, Sung Won Kim6,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 477-492, 2022, DOI:10.32604/cmc.2022.025939

    Abstract Wireless sensor networks (WSN) encompass a set of inexpensive and battery powered sensor nodes, commonly employed for data gathering and tracking applications. Optimal energy utilization of the nodes in WSN is essential to capture data effectively and transmit them to destination. The latest developments of energy efficient clustering techniques can be widely applied to accomplish energy efficiency in the network. In this aspect, this paper presents an enhanced Archimedes optimization based cluster head selection (EAOA-CHS) approach for WSN. The goal of the EAOA-CHS method is to optimally choose the CHs from the available nodes in WSN and then organize the… More >

  • Open Access


    Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection System

    Ala Saleh Alluhaidan1, Masoud Alajmi2, Fahd N. Al-Wesabi3,4, Anwer Mustafa Hilal5, Manar Ahmed Hamza5,*, Abdelwahed Motwakel5

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2713-2727, 2022, DOI:10.32604/cmc.2022.025202

    Abstract Human fall detection (FD) acts as an important part in creating sensor based alarm system, enabling physical therapists to minimize the effect of fall events and save human lives. Generally, elderly people suffer from several diseases, and fall action is a common situation which can occur at any time. In this view, this paper presents an Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection (IAOA-DLFD) model to identify the fall/non-fall events. The proposed IAOA-DLFD technique comprises different levels of pre-processing to improve the input image quality. Besides, the IAOA with Capsule Network based feature extractor is derived to… More >

Displaying 1-10 on page 1 of 5. Per Page