Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (332)
  • Open Access

    ARTICLE

    Self-Attention Spatio-Temporal Deep Collaborative Network for Robust FDIA Detection in Smart Grids

    Tong Zu, Fengyong Li*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1395-1417, 2024, DOI:10.32604/cmes.2024.055442 - 27 September 2024

    Abstract False data injection attack (FDIA) can affect the state estimation of the power grid by tampering with the measured value of the power grid data, and then destroying the stable operation of the smart grid. Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams. Data-driven features, however, cannot effectively capture the differences between noisy data and attack samples. As a result, slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks. To address this problem, this paper designs a… More >

  • Open Access

    ARTICLE

    Understanding the Link: Emotional Attention in Italian Families and Children’s Social Development

    Catalda Corvasce1, Juan Pedro Martínez-Ramón2,*, Francisco Manuel Morales-Rodríguez3, Lidia Pellicer-García4, Inmaculada Méndez2, Cecilia Ruiz-Esteban2

    International Journal of Mental Health Promotion, Vol.26, No.9, pp. 709-718, 2024, DOI:10.32604/ijmhp.2024.053599 - 20 September 2024

    Abstract Background: Emotional attention refers to the capacity to recognize and properly respond to one’s and others’ emotional states. On another note, family is a primary source of socialization that influences the development of various social skills. In another line, adolescence is a complex stage that has been associated with emotional difficulties that could be related to competences such as prosociability and inclusion. It is inferred that through the family context and the attention that is processed, a series of competencies are transmitted to the youngsters, but this relationship is still unclear. For this reason, the… More >

  • Open Access

    ARTICLE

    Pyramid Separable Channel Attention Network for Single Image Super-Resolution

    Congcong Ma1,3, Jiaqi Mi2, Wanlin Gao1,3, Sha Tao1,3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4687-4701, 2024, DOI:10.32604/cmc.2024.055803 - 12 September 2024

    Abstract Single Image Super-Resolution (SISR) technology aims to reconstruct a clear, high-resolution image with more information from an input low-resolution image that is blurry and contains less information. This technology has significant research value and is widely used in fields such as medical imaging, satellite image processing, and security surveillance. Despite significant progress in existing research, challenges remain in reconstructing clear and complex texture details, with issues such as edge blurring and artifacts still present. The visual perception effect still needs further enhancement. Therefore, this study proposes a Pyramid Separable Channel Attention Network (PSCAN) for the… More >

  • Open Access

    ARTICLE

    Enhancing Unsupervised Domain Adaptation for Person Re-Identification with the Minimal Transfer Cost Framework

    Sheng Xu1, Shixiong Xiang2, Feiyu Meng1, Qiang Wu1,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4197-4218, 2024, DOI:10.32604/cmc.2024.055157 - 12 September 2024

    Abstract In Unsupervised Domain Adaptation (UDA) for person re-identification (re-ID), the primary challenge is reducing the distribution discrepancy between the source and target domains. This can be achieved by implicitly or explicitly constructing an appropriate intermediate domain to enhance recognition capability on the target domain. Implicit construction is difficult due to the absence of intermediate state supervision, making smooth knowledge transfer from the source to the target domain a challenge. To explicitly construct the most suitable intermediate domain for the model to gradually adapt to the feature distribution changes from the source to the target domain,… More >

  • Open Access

    ARTICLE

    HWD-YOLO: A New Vision-Based Helmet Wearing Detection Method

    Licheng Sun1, Heping Li2,3, Liang Wang1,4,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4543-4560, 2024, DOI:10.32604/cmc.2024.055115 - 12 September 2024

    Abstract It is crucial to ensure workers wear safety helmets when working at a workplace with a high risk of safety accidents, such as construction sites and mine tunnels. Although existing methods can achieve helmet detection in images, their accuracy and speed still need improvements since complex, cluttered, and large-scale scenes of real workplaces cause server occlusion, illumination change, scale variation, and perspective distortion. So, a new safety helmet-wearing detection method based on deep learning is proposed. Firstly, a new multi-scale contextual aggregation module is proposed to aggregate multi-scale feature information globally and highlight the details… More >

  • Open Access

    ARTICLE

    Rail-PillarNet: A 3D Detection Network for Railway Foreign Object Based on LiDAR

    Fan Li1,2, Shuyao Zhang3, Jie Yang1,2,*, Zhicheng Feng1,2, Zhichao Chen1,2

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3819-3833, 2024, DOI:10.32604/cmc.2024.054525 - 12 September 2024

    Abstract Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional (2D) images, such as short detection distance, strong influence of environment and lack of distance information, we propose Rail-PillarNet, a three-dimensional (3D) LIDAR (Light Detection and Ranging) railway foreign object detection method based on the improvement of PointPillars. Firstly, the parallel attention pillar encoder (PAPE) is designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss in PointPillars pillars encoder. Secondly, a fine backbone network is designed to improve the feature extraction… More >

  • Open Access

    ARTICLE

    Ghost-YOLO v8: An Attention-Guided Enhanced Small Target Detection Algorithm for Floating Litter on Water Surfaces

    Zhongmin Huangfu, Shuqing Li*, Luoheng Yan

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3713-3731, 2024, DOI:10.32604/cmc.2024.054188 - 12 September 2024

    Abstract Addressing the challenges in detecting surface floating litter in artificial lakes, including complex environments, uneven illumination, and susceptibility to noise and weather, this paper proposes an efficient and lightweight Ghost-YOLO (You Only Look Once) v8 algorithm. The algorithm integrates advanced attention mechanisms and a small-target detection head to significantly enhance detection performance and efficiency. Firstly, an SE (Squeeze-and-Excitation) mechanism is incorporated into the backbone network to fortify the extraction of resilient features and precise target localization. This mechanism models feature channel dependencies, enabling adaptive adjustment of channel importance, thereby improving recognition of floating litter targets.… More >

  • Open Access

    ARTICLE

    GATiT: An Intelligent Diagnosis Model Based on Graph Attention Network Incorporating Text Representation in Knowledge Reasoning

    Yu Song, Pengcheng Wu, Dongming Dai, Mingyu Gui, Kunli Zhang*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4767-4790, 2024, DOI:10.32604/cmc.2024.053506 - 12 September 2024

    Abstract The growing prevalence of knowledge reasoning using knowledge graphs (KGs) has substantially improved the accuracy and efficiency of intelligent medical diagnosis. However, current models primarily integrate electronic medical records (EMRs) and KGs into the knowledge reasoning process, ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text. To better integrate EMR text information, we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning (GATiT), which comprises text representation, subgraph construction, knowledge reasoning, and diagnostic classification. In the… More >

  • Open Access

    ARTICLE

    Robust and Discriminative Feature Learning via Mutual Information Maximization for Object Detection in Aerial Images

    Xu Sun, Yinhui Yu*, Qing Cheng

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4149-4171, 2024, DOI:10.32604/cmc.2024.052725 - 12 September 2024

    Abstract Object detection in unmanned aerial vehicle (UAV) aerial images has become increasingly important in military and civil applications. General object detection models are not robust enough against interclass similarity and intraclass variability of small objects, and UAV-specific nuisances such as uncontrolled weather conditions. Unlike previous approaches focusing on high-level semantic information, we report the importance of underlying features to improve detection accuracy and robustness from the information-theoretic perspective. Specifically, we propose a robust and discriminative feature learning approach through mutual information maximization (RD-MIM), which can be integrated into numerous object detection methods for aerial images.… More >

  • Open Access

    ARTICLE

    Spatial Attention Integrated EfficientNet Architecture for Breast Cancer Classification with Explainable AI

    Sannasi Chakravarthy1, Bharanidharan Nagarajan2, Surbhi Bhatia Khan3,7,*, Vinoth Kumar Venkatesan2, Mahesh Thyluru Ramakrishna4, Ahlam Al Musharraf5, Khursheed Aurungzeb6

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 5029-5045, 2024, DOI:10.32604/cmc.2024.052531 - 12 September 2024

    Abstract Breast cancer is a type of cancer responsible for higher mortality rates among women. The cruelty of breast cancer always requires a promising approach for its earlier detection. In light of this, the proposed research leverages the representation ability of pretrained EfficientNet-B0 model and the classification ability of the XGBoost model for the binary classification of breast tumors. In addition, the above transfer learning model is modified in such a way that it will focus more on tumor cells in the input mammogram. Accordingly, the work proposed an EfficientNet-B0 having a Spatial Attention Layer with More >

Displaying 1-10 on page 1 of 332. Per Page