Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (271)
  • Open Access

    ARTICLE

    HgaNets: Fusion of Visual Data and Skeletal Heatmap for Human Gesture Action Recognition

    Wuyan Liang1, Xiaolong Xu2,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1089-1103, 2024, DOI:10.32604/cmc.2024.047861

    Abstract Recognition of human gesture actions is a challenging issue due to the complex patterns in both visual and skeletal features. Existing gesture action recognition (GAR) methods typically analyze visual and skeletal data, failing to meet the demands of various scenarios. Furthermore, multi-modal approaches lack the versatility to efficiently process both uniform and disparate input patterns. Thus, in this paper, an attention-enhanced pseudo-3D residual model is proposed to address the GAR problem, called HgaNets. This model comprises two independent components designed for modeling visual RGB (red, green and blue) images and 3D skeletal heatmaps, respectively. More specifically, each component consists of… More >

  • Open Access

    ARTICLE

    MSC-YOLO: Improved YOLOv7 Based on Multi-Scale Spatial Context for Small Object Detection in UAV-View

    Xiangyan Tang1,2, Chengchun Ruan1,2,*, Xiulai Li2,3, Binbin Li1,2, Cebin Fu1,2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 983-1003, 2024, DOI:10.32604/cmc.2024.047541

    Abstract Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in the field of small object detection on unmanned aerial vehicles (UAVs). This task is challenging due to variations in UAV flight altitude, differences in object scales, as well as factors like flight speed and motion blur. To enhance the detection efficacy of small targets in drone aerial imagery, we propose an enhanced You Only Look Once version 7 (YOLOv7) algorithm based on multi-scale spatial context. We build the MSC-YOLO model, which incorporates an additional prediction head, denoted as P2, to improve adaptability for small objects.… More >

  • Open Access

    ARTICLE

    A Simple and Effective Surface Defect Detection Method of Power Line Insulators for Difficult Small Objects

    Xiao Lu1,*, Chengling Jiang1, Zhoujun Ma1, Haitao Li2, Yuexin Liu2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 373-390, 2024, DOI:10.32604/cmc.2024.047469

    Abstract Insulator defect detection plays a vital role in maintaining the secure operation of power systems. To address the issues of the difficulty of detecting small objects and missing objects due to the small scale, variable scale, and fuzzy edge morphology of insulator defects, we construct an insulator dataset with 1600 samples containing flashovers and breakages. Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed. Firstly, a high-resolution feature map is introduced and a small object prediction layer is added so that the model can detect tiny objects. Secondly, a simplified… More >

  • Open Access

    ARTICLE

    MIDNet: Deblurring Network for Material Microstructure Images

    Jiaxiang Wang1, Zhengyi Li1, Peng Shi1, Hongying Yu2, Dongbai Sun1,3,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1187-1204, 2024, DOI:10.32604/cmc.2024.046929

    Abstract Scanning electron microscopy (SEM) is a crucial tool in the field of materials science, providing valuable insights into the microstructural characteristics of materials. Unfortunately, SEM images often suffer from blurriness caused by improper hardware calibration or imaging automation errors, which present challenges in analyzing and interpreting material characteristics. Consequently, rectifying the blurring of these images assumes paramount significance to enable subsequent analysis. To address this issue, we introduce a Material Images Deblurring Network (MIDNet) built upon the foundation of the Nonlinear Activation Free Network (NAFNet). MIDNet is meticulously tailored to address the blurring in images capturing the microstructure of materials.… More >

  • Open Access

    ARTICLE

    Multimodal Social Media Fake News Detection Based on Similarity Inference and Adversarial Networks

    Fangfang Shan1,2,*, Huifang Sun1,2, Mengyi Wang1,2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 581-605, 2024, DOI:10.32604/cmc.2024.046202

    Abstract As social networks become increasingly complex, contemporary fake news often includes textual descriptions of events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely to create a misleading perception among users. While early research primarily focused on text-based features for fake news detection mechanisms, there has been relatively limited exploration of learning shared representations in multimodal (text and visual) contexts. To address these limitations, this paper introduces a multimodal model for detecting fake news, which relies on similarity reasoning and adversarial networks. The model employs Bidirectional Encoder Representation from Transformers (BERT) and Text Convolutional Neural… More >

  • Open Access

    ARTICLE

    NFHP-RN: A Method of Few-Shot Network Attack Detection Based on the Network Flow Holographic Picture-ResNet

    Tao Yi1,3, Xingshu Chen1,2,*, Mingdong Yang3, Qindong Li1, Yi Zhu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 929-955, 2024, DOI:10.32604/cmes.2024.048793

    Abstract Due to the rapid evolution of Advanced Persistent Threats (APTs) attacks, the emergence of new and rare attack samples, and even those never seen before, make it challenging for traditional rule-based detection methods to extract universal rules for effective detection. With the progress in techniques such as transfer learning and meta-learning, few-shot network attack detection has progressed. However, challenges in few-shot network attack detection arise from the inability of time sequence flow features to adapt to the fixed length input requirement of deep learning, difficulties in capturing rich information from original flow in the case of insufficient samples, and the… More >

  • Open Access

    ARTICLE

    DCFNet: An Effective Dual-Branch Cross-Attention Fusion Network for Medical Image Segmentation

    Chengzhang Zhu1,2, Renmao Zhang1, Yalong Xiao1,2,*, Beiji Zou1, Xian Chai1, Zhangzheng Yang1, Rong Hu3, Xuanchu Duan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1103-1128, 2024, DOI:10.32604/cmes.2024.048453

    Abstract Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis. Notably, most existing methods that combine the strengths of convolutional neural networks (CNNs) and Transformers have made significant progress. However, there are some limitations in the current integration of CNN and Transformer technology in two key aspects. Firstly, most methods either overlook or fail to fully incorporate the complementary nature between local and global features. Secondly, the significance of integrating the multi-scale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer. To address… More >

  • Open Access

    ARTICLE

    Perception Enhanced Deep Deterministic Policy Gradient for Autonomous Driving in Complex Scenarios

    Lyuchao Liao1,2, Hankun Xiao2,*, Pengqi Xing2, Zhenhua Gan1,2, Youpeng He2, Jiajun Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 557-576, 2024, DOI:10.32604/cmes.2024.047452

    Abstract Autonomous driving has witnessed rapid advancement; however, ensuring safe and efficient driving in intricate scenarios remains a critical challenge. In particular, traffic roundabouts bring a set of challenges to autonomous driving due to the unpredictable entry and exit of vehicles, susceptibility to traffic flow bottlenecks, and imperfect data in perceiving environmental information, rendering them a vital issue in the practical application of autonomous driving. To address the traffic challenges, this work focused on complex roundabouts with multi-lane and proposed a Perception Enhanced Deep Deterministic Policy Gradient (PE-DDPG) for Autonomous Driving in the Roundabouts. Specifically, the model incorporates an enhanced variational… More >

  • Open Access

    ARTICLE

    An Approach for Human Posture Recognition Based on the Fusion PSE-CNN-BiGRU Model

    Xianghong Cao, Xinyu Wang, Xin Geng*, Donghui Wu, Houru An

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 385-408, 2024, DOI:10.32604/cmes.2024.046752

    Abstract This study proposes a pose estimation-convolutional neural network-bidirectional gated recurrent unit (PSE-CNN-BiGRU) fusion model for human posture recognition to address low accuracy issues in abnormal posture recognition due to the loss of some feature information and the deterioration of comprehensive performance in model detection in complex home environments. Firstly, the deep convolutional network is integrated with the Mediapipe framework to extract high-precision, multi-dimensional information from the key points of the human skeleton, thereby obtaining a human posture feature set. Thereafter, a double-layer BiGRU algorithm is utilized to extract multi-layer, bidirectional temporal features from the human posture feature set, and a… More >

  • Open Access

    ARTICLE

    An Image Fingerprint and Attention Mechanism Based Load Estimation Algorithm for Electric Power System

    Qing Zhu1,*, Linlin Gu1,2, Huijie Lin1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 577-591, 2024, DOI:10.32604/cmes.2023.043307

    Abstract With the rapid development of electric power systems, load estimation plays an important role in system operation and planning. Usually, load estimation techniques contain traditional, time series, regression analysis-based, and machine learning-based estimation. Since the machine learning-based method can lead to better performance, in this paper, a deep learning-based load estimation algorithm using image fingerprint and attention mechanism is proposed. First, an image fingerprint construction is proposed for training data. After the data preprocessing, the training data matrix is constructed by the cyclic shift and cubic spline interpolation. Then, the linear mapping and the gray-color transformation method are proposed to… More >

Displaying 11-20 on page 2 of 271. Per Page