Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (187)
  • Open Access

    ARTICLE

    Faster RCNN Target Detection Algorithm Integrating CBAM and FPN

    Wenshun Sheng*, Xiongfeng Yu, Jiayan Lin, Xin Chen

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1549-1569, 2023, DOI:10.32604/csse.2023.039410

    Abstract Small targets and occluded targets will inevitably appear in the image during the shooting process due to the influence of angle, distance, complex scene, illumination intensity, and other factors. These targets have few effective pixels, few features, and no apparent features, which makes extracting their efficient features difficult and easily leads to false detection, missed detection, and repeated detection, affecting the performance of target detection models. An improved faster region convolutional neural network (RCNN) algorithm (CF-RCNN) integrating convolutional block attention module (CBAM) and feature pyramid networks (FPN) is proposed to improve the detection and recognition accuracy of small-size objects, occluded… More >

  • Open Access

    ARTICLE

    An Efficient 3D CNN Framework with Attention Mechanisms for Alzheimer’s Disease Classification

    Athena George1, Bejoy Abraham2, Neetha George3, Linu Shine3, Sivakumar Ramachandran4,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2097-2118, 2023, DOI:10.32604/csse.2023.039262

    Abstract Neurodegeneration is the gradual deterioration and eventual death of brain cells, leading to progressive loss of structure and function of neurons in the brain and nervous system. Neurodegenerative disorders, such as Alzheimer’s, Huntington’s, Parkinson’s, amyotrophic lateral sclerosis, multiple system atrophy, and multiple sclerosis, are characterized by progressive deterioration of brain function, resulting in symptoms such as memory impairment, movement difficulties, and cognitive decline. Early diagnosis of these conditions is crucial to slowing down cell degeneration and reducing the severity of the diseases. Magnetic resonance imaging (MRI) is widely used by neurologists for diagnosing brain abnormalities. The majority of the research… More >

  • Open Access

    ARTICLE

    Multi-Target Tracking of Person Based on Deep Learning

    Xujun Li*, Guodong Fang, Liming Rao, Tengze Zhang

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2671-2688, 2023, DOI:10.32604/csse.2023.038154

    Abstract To improve the tracking accuracy of persons in the surveillance video, we proposed an algorithm for multi-target tracking persons based on deep learning. In this paper, we used You Only Look Once v5 (YOLOv5) to obtain person targets of each frame in the video and used Simple Online and Realtime Tracking with a Deep Association Metric (DeepSORT) to do cascade matching and Intersection Over Union (IOU) matching of person targets between different frames. To solve the IDSwitch problem caused by the low feature extraction ability of the Re-Identification (ReID) network in the process of cascade matching, we introduced Spatial Relation-aware… More >

  • Open Access

    ARTICLE

    Automatic Crop Expert System Using Improved LSTM with Attention Block

    Shahbaz Sikandar1, Rabbia Mahum1, Suliman Aladhadh2,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2007-2025, 2023, DOI:10.32604/csse.2023.037723

    Abstract Agriculture plays an important role in the economy of any country. Approximately half of the population of developing countries is directly or indirectly connected to the agriculture field. Many farmers do not choose the right crop for cultivation depending on their soil type, crop type, and climatic requirements like rainfall. This wrong decision of crop selection directly affects the production of the crops which leads to yield and economic loss in the country. Many parameters should be observed such as soil characteristics, type of crop, and environmental factors for the cultivation of the right crop. Manual decision-making is time-taking and… More >

  • Open Access

    ARTICLE

    Modelling an Efficient URL Phishing Detection Approach Based on a Dense Network Model

    A. Aldo Tenis*, R. Santhosh

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2625-2641, 2023, DOI:10.32604/csse.2023.036626

    Abstract The social engineering cyber-attack is where culprits mislead the users by getting the login details which provides the information to the evil server called phishing. The deep learning approaches and the machine learning are compared in the proposed system for presenting the methodology that can detect phishing websites via Uniform Resource Locator (URLs) analysis. The legal class is composed of the home pages with no inclusion of login forms in most of the present modern solutions, which deals with the detection of phishing. Contrarily, the URLs in both classes from the login page due, considering the representation of a real… More >

  • Open Access

    ARTICLE

    Quick and Accurate Counting of Rapeseed Seedling with Improved YOLOv5s and Deep-Sort Method

    Chen Su, Jie Hong, Jiang Wang, Yang Yang*

    Phyton-International Journal of Experimental Botany, Vol.92, No.9, pp. 2611-2632, 2023, DOI:10.32604/phyton.2023.029457

    Abstract The statistics of the number of rapeseed seedlings are very important for breeders and planters to conduct seed quality testing, field crop management and yield estimation. Calculating the number of seedlings is inefficient and cumbersome in the traditional method. In this study, a method was proposed for efficient detection and calculation of rapeseed seedling number based on improved you only look once version 5 (YOLOv5) to identify objects and deep-sort to perform object tracking for rapeseed seedling video. Coordinated attention (CA) mechanism was added to the trunk of the improved YOLOv5s, which made the model more effective in identifying shaded,… More >

  • Open Access

    ARTICLE

    Building Indoor Dangerous Behavior Recognition Based on LSTM-GCN with Attention Mechanism

    Qingyue Zhao1, Qiaoyu Gu2, Zhijun Gao3,*, Shipian Shao1, Xinyuan Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1773-1788, 2023, DOI:10.32604/cmes.2023.027500

    Abstract Building indoor dangerous behavior recognition is a specific application in the field of abnormal human recognition. A human dangerous behavior recognition method based on LSTM-GCN with attention mechanism (GLA) model was proposed aiming at the problem that the existing human skeleton-based action recognition methods cannot fully extract the temporal and spatial features. The network connects GCN and LSTM network in series, and inputs the skeleton sequence extracted by GCN that contains spatial information into the LSTM layer for time sequence feature extraction, which fully excavates the temporal and spatial features of the skeleton sequence. Finally, an attention layer is designed… More >

  • Open Access

    REVIEW

    Deep Learning Applied to Computational Mechanics: A Comprehensive Review, State of the Art, and the Classics

    Loc Vu-Quoc1,*, Alexander Humer2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1069-1343, 2023, DOI:10.32604/cmes.2023.028130

    Abstract Three recent breakthroughs due to AI in arts and science serve as motivation: An award winning digital image, protein folding, fast matrix multiplication. Many recent developments in artificial neural networks, particularly deep learning (DL), applied and relevant to computational mechanics (solid, fluids, finite-element technology) are reviewed in detail. Both hybrid and pure machine learning (ML) methods are discussed. Hybrid methods combine traditional PDE discretizations with ML methods either (1) to help model complex nonlinear constitutive relations, (2) to nonlinearly reduce the model order for efficient simulation (turbulence), or (3) to accelerate the simulation by predicting certain components in the traditional… More >

  • Open Access

    ARTICLE

    Single Image Deraining Using Dual Branch Network Based on Attention Mechanism for IoT

    Di Wang, Bingcai Wei, Liye Zhang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1989-2000, 2023, DOI:10.32604/cmes.2023.028529

    Abstract Extracting useful details from images is essential for the Internet of Things project. However, in real life, various external environments,such as badweather conditions,will cause the occlusion of key target information and image distortion, resulting in difficulties and obstacles to the extraction of key information, affecting the judgment of the real situation in the process of the Internet of Things, and causing system decision-making errors and accidents. In this paper, we mainly solve the problem of rain on the image occlusion, remove the rain grain in the image, and get a clear image without rain. Therefore, the single image deraining algorithm… More >

  • Open Access

    ARTICLE

    TC-Fuse: A Transformers Fusing CNNs Network for Medical Image Segmentation

    Peng Geng1, Ji Lu1, Ying Zhang2,*, Simin Ma1, Zhanzhong Tang2, Jianhua Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 2001-2023, 2023, DOI:10.32604/cmes.2023.027127

    Abstract In medical image segmentation task, convolutional neural networks (CNNs) are difficult to capture long-range dependencies, but transformers can model the long-range dependencies effectively. However, transformers have a flexible structure and seldom assume the structural bias of input data, so it is difficult for transformers to learn positional encoding of the medical images when using fewer images for training. To solve these problems, a dual branch structure is proposed. In one branch, Mix-Feed-Forward Network (Mix-FFN) and axial attention are adopted to capture long-range dependencies and keep the translation invariance of the model. Mix-FFN whose depth-wise convolutions can provide position information is… More >

Displaying 11-20 on page 2 of 187. Per Page