Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (171)
  • Open Access

    ARTICLE

    EEG Emotion Recognition Using an Attention Mechanism Based on an Optimized Hybrid Model

    Huiping Jiang1,*, Demeng Wu1, Xingqun Tang1, Zhongjie Li1, Wenbo Wu2

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2697-2712, 2022, DOI:10.32604/cmc.2022.027856 - 16 June 2022

    Abstract Emotions serve various functions. The traditional emotion recognition methods are based primarily on readily accessible facial expressions, gestures, and voice signals. However, it is often challenging to ensure that these non-physical signals are valid and reliable in practical applications. Electroencephalogram (EEG) signals are more successful than other signal recognition methods in recognizing these characteristics in real-time since they are difficult to camouflage. Although EEG signals are commonly used in current emotional recognition research, the accuracy is low when using traditional methods. Therefore, this study presented an optimized hybrid pattern with an attention mechanism (FFT_CLA) for… More >

  • Open Access

    ARTICLE

    HDAM: Heuristic Difference Attention Module for Convolutional Neural Networks

    Yu Xue*, Ziming Yuan

    Journal on Internet of Things, Vol.4, No.1, pp. 57-67, 2022, DOI:10.32604/jiot.2022.025327 - 17 May 2022

    Abstract The attention mechanism is one of the most important priori knowledge to enhance convolutional neural networks. Most attention mechanisms are bound to the convolutional layer and use local or global contextual information to recalibrate the input. This is a popular attention strategy design method. Global contextual information helps the network to consider the overall distribution, while local contextual information is more general. The contextual information makes the network pay attention to the mean or maximum value of a particular receptive field. Different from the most attention mechanism, this article proposes a novel attention mechanism with… More >

  • Open Access

    ARTICLE

    Real-time Safety Helmet-wearing Detection Based on Improved YOLOv5

    Yanman Li1, Jun Zhang1, Yang Hu1, Yingnan Zhao2,*, Yi Cao3

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 1219-1230, 2022, DOI:10.32604/csse.2022.028224 - 09 May 2022

    Abstract Safety helmet-wearing detection is an essential part of the intelligent monitoring system. To improve the speed and accuracy of detection, especially small targets and occluded objects, it presents a novel and efficient detector model. The underlying core algorithm of this model adopts the YOLOv5 (You Only Look Once version 5) network with the best comprehensive detection performance. It is improved by adding an attention mechanism, a CIoU (Complete Intersection Over Union) Loss function, and the Mish activation function. First, it applies the attention mechanism in the feature extraction. The network can learn the weight of… More >

  • Open Access

    ARTICLE

    Spatio-temporal Model Combining VMD and AM for Wind Speed Prediction

    Yingnan Zhao1,*, Peiyuan Ji1, Fei Chen1, Guanlan Ji1, Sunil Kumar Jha2

    Intelligent Automation & Soft Computing, Vol.34, No.2, pp. 1001-1016, 2022, DOI:10.32604/iasc.2022.027710 - 03 May 2022

    Abstract This paper proposes a spatio-temporal model (VCGA) based on variational mode decomposition (VMD) and attention mechanism. The proposed prediction model combines a squeeze-and-excitation network to extract spatial features and a gated recurrent unit to capture temporal dependencies. Primarily, the VMD can reduce the instability of the original wind speed data and the attention mechanism functions to strengthen the impact of important information. In addition, the VMD and attention mechanism act to avoid a decline in prediction accuracy. Finally, the VCGA trains the decomposition result and derives the final results after merging the prediction result of More >

  • Open Access

    ARTICLE

    A Novel Method for Precipitation Nowcasting Based on ST-LSTM

    Wei Fang1,2,*, Liang Shen1, Victor S. Sheng3, Qiongying Xue1

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4867-4877, 2022, DOI:10.32604/cmc.2022.027197 - 21 April 2022

    Abstract Precipitation nowcasting is of great significance for severe convective weather warnings. Radar echo extrapolation is a commonly used precipitation nowcasting method. However, the traditional radar echo extrapolation methods are encountered with the dilemma of low prediction accuracy and extrapolation ambiguity. The reason is that those methods cannot retain important long-term information and fail to capture short-term motion information from the long-range data stream. In order to solve the above problems, we select the spatiotemporal long short-term memory (ST-LSTM) as the recurrent unit of the model and integrate the 3D convolution operation in it to strengthen… More >

  • Open Access

    ARTICLE

    Spatio-Temporal Wind Speed Prediction Based on Variational Mode Decomposition

    Yingnan Zhao1,*, Guanlan Ji1, Fei Chen1, Peiyuan Ji1, Yi Cao2

    Computer Systems Science and Engineering, Vol.43, No.2, pp. 719-735, 2022, DOI:10.32604/csse.2022.027288 - 20 April 2022

    Abstract Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers. This paper proposes a new variational mode decomposition (VMD)-attention-based spatio-temporal network (VASTN) method that takes advantage of both temporal and spatial correlations of wind speed. First, VASTN is a hybrid wind speed prediction model that combines VMD, squeeze-and-excitation network (SENet), and attention mechanism (AM)-based bidirectional long short-term memory (BiLSTM). VASTN initially employs VMD to decompose the wind speed matrix into a series of intrinsic mode functions (IMF). Then, to extract the spatial features at the bottom of the model, each More >

  • Open Access

    ARTICLE

    Multi-Feature Fusion-Guided Multiscale Bidirectional Attention Networks for Logistics Pallet Segmentation

    Weiwei Cai1,2, Yaping Song1, Huan Duan1, Zhenwei Xia1, Zhanguo Wei1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1539-1555, 2022, DOI:10.32604/cmes.2022.019785 - 19 April 2022

    Abstract In the smart logistics industry, unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by humans. Therefore, they play a critical role in smart warehousing, and semantics segmentation is an effective method to realize the intelligent identification of logistics pallets. However, most current recognition algorithms are ineffective due to the diverse types of pallets, their complex shapes, frequent blockades in production environments, and changing lighting conditions. This paper proposes a novel multi-feature fusion-guided multiscale bidirectional attention (MFMBA) neural network for logistics… More >

  • Open Access

    ARTICLE

    Negative Emotions Sensitive Humanoid Robot with Attention-Enhanced Facial Expression Recognition Network

    Rongrong Ni1, Xiaofeng Liu1,*, Yizhou Chen1, Xu Zhou1, Huili Cai1, Loo Chu Kiong2

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 149-164, 2022, DOI:10.32604/iasc.2022.026813 - 15 April 2022

    Abstract Lonely older adults and persons restricted in movements are apt to cause negative emotions, which is harmful to their mental health. A humanoid robot with audiovisual interactions is presented, which can correspondingly output positive facial expressions to relieve human's negative facial expressions. The negative emotions are identified through an attention-enhanced facial expression recognition (FER) network. The network is firstly trained on MMEW macro-and micro-expression databases to discover expression-related features. Then, macro-expression recognition tasks are performed by fine-tuning the trained models on several benchmarking FER databases, including CK+ and Oulu-CASIA. A transformer network is introduced to More >

  • Open Access

    ARTICLE

    Classification of Echocardiographic Standard Views Using a Hybrid Attention-based Approach

    Zi Ye1, Yogan Jaya Kumar2, Goh Ong Sing2, Fengyan Song3, Xianda Ni4,*

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 1197-1215, 2022, DOI:10.32604/iasc.2022.023555 - 08 February 2022

    Abstract The determination of the probe viewpoint forms an essential step in automatic echocardiographic image analysis. However, classifying echocardiograms at the video level is complicated, and previous observations concluded that the most significant challenge lies in distinguishing among the various adjacent views. To this end, we propose an ECHO-Attention architecture consisting of two parts. We first design an ECHO-ACTION block, which efficiently encodes Spatio-temporal features, channel-wise features, and motion features. Then, we can insert this block into existing ResNet architectures, combined with a self-attention module to ensure its task-related focus, to form an effective ECHO-Attention network. More >

  • Open Access

    ARTICLE

    A Novel Feature Aggregation Approach for Image Retrieval Using Local and Global Features

    Yuhua Li1, Zhiqiang He1,2, Junxia Ma1,*, Zhifeng Zhang1,*, Wangwei Zhang1, Prasenjit Chatterjee3, Dragan Pamucar4

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 239-262, 2022, DOI:10.32604/cmes.2022.016287 - 24 January 2022

    Abstract The current deep convolution features based on retrieval methods cannot fully use the characteristics of the salient image regions. Also, they cannot effectively suppress the background noises, so it is a challenging task to retrieve objects in cluttered scenarios. To solve the problem, we propose a new image retrieval method that employs a novel feature aggregation approach with an attention mechanism and utilizes a combination of local and global features. The method first extracts global and local features of the input image and then selects keypoints from local features by using the attention mechanism. After… More >

Displaying 131-140 on page 14 of 171. Per Page