Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    REVIEW

    Bio-Inspired Algorithms in NLP Techniques: Challenges, Limitations and Its Applications

    Huu-Tuong Ho1, Thi-Thuy-Hoai Nguyen2, Duong Nguyen Minh Huy3, Luong Vuong Nguyen1,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 3945-3973, 2025, DOI:10.32604/cmc.2025.063099 - 19 May 2025

    Abstract Natural Language Processing (NLP) has become essential in text classification, sentiment analysis, machine translation, and speech recognition applications. As these tasks become complex, traditional machine learning and deep learning models encounter challenges with optimization, parameter tuning, and handling large-scale, high-dimensional data. Bio-inspired algorithms, which mimic natural processes, offer robust optimization capabilities that can enhance NLP performance by improving feature selection, optimizing model parameters, and integrating adaptive learning mechanisms. This review explores the state-of-the-art applications of bio-inspired algorithms—such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO)—across core NLP tasks. We analyze More >

  • Open Access

    ARTICLE

    Artificial Circulation System Algorithm: A Novel Bio-Inspired Algorithm

    Nermin Özcan1,2,*, Semih Utku3, Tolga Berber4

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 635-663, 2025, DOI:10.32604/cmes.2024.055860 - 17 December 2024

    Abstract Metaheuristics are commonly used in various fields, including real-life problem-solving and engineering applications. The present work introduces a novel metaheuristic algorithm named the Artificial Circulatory System Algorithm (ACSA). The control of the circulatory system inspires it and mimics the behavior of hormonal and neural regulators involved in this process. The work initially evaluates the effectiveness of the suggested approach on 16 two-dimensional test functions, identified as classical benchmark functions. The method was subsequently examined by application to 12 CEC 2022 benchmark problems of different complexities. Furthermore, the paper evaluates ACSA in comparison to 64 metaheuristic… More >

  • Open Access

    ARTICLE

    Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection

    Hala AlShamlan*, Halah AlMazrua*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 675-694, 2024, DOI:10.32604/cmc.2024.048146 - 25 April 2024

    Abstract In this study, our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization (GWO) with Harris Hawks Optimization (HHO) for feature selection. The motivation for utilizing GWO and HHO stems from their bio-inspired nature and their demonstrated success in optimization problems. We aim to leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification. We selected leave-one-out cross-validation (LOOCV) to evaluate the performance of both two widely used classifiers, k-nearest neighbors (KNN) and support vector machine… More >

  • Open Access

    ARTICLE

    An Improved Sparrow Search Algorithm for Node Localization in WSN

    R. Thenmozhi1, Abdul Wahid Nasir2, Vijaya Krishna Sonthi3, T. Avudaiappan4, Seifedine Kadry5, Kuntha Pin6, Yunyoung Nam7,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 2037-2051, 2022, DOI:10.32604/cmc.2022.022203 - 03 November 2021

    Abstract Wireless sensor networks (WSN) comprise a set of numerous cheap sensors placed in the target region. A primary function of the WSN is to avail the location details of the event occurrences or the node. A major challenge in WSN is node localization which plays an important role in data gathering applications. Since GPS is expensive and inaccurate in indoor regions, effective node localization techniques are needed. The major intention of localization is for determining the place of node in short period with minimum computation. To achieve this, bio-inspired algorithms are used and node localization… More >

  • Open Access

    ARTICLE

    Deep Learning Based Optimal Multimodal Fusion Framework for Intrusion Detection Systems for Healthcare Data

    Phong Thanh Nguyen1, Vy Dang Bich Huynh2, Khoa Dang Vo1, Phuong Thanh Phan1, Mohamed Elhoseny3, Dac-Nhuong Le4,5,*

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2555-2571, 2021, DOI:10.32604/cmc.2021.012941 - 28 December 2020

    Abstract Data fusion is a multidisciplinary research area that involves different domains. It is used to attain minimum detection error probability and maximum reliability with the help of data retrieved from multiple healthcare sources. The generation of huge quantity of data from medical devices resulted in the formation of big data during which data fusion techniques become essential. Securing medical data is a crucial issue of exponentially-pacing computing world and can be achieved by Intrusion Detection Systems (IDS). In this regard, since singular-modality is not adequate to attain high detection rate, there is a need exists… More >

  • Open Access

    ARTICLE

    Structure from Motion Using Bio-Inspired Intelligence Algorithm and Conformal Geometric Algebra

    Nancy Arana-Daniel, Carlos Villaseñor, Carlos López-Franco, Alma Y. Alanís, Roberto Valencia-Murillo

    Intelligent Automation & Soft Computing, Vol.24, No.3, pp. 461-467, 2018, DOI:10.1080/10798587.2017.1299356

    Abstract Structure from Motion algorithms offer good advantages, such as extract 3D information in monocular systems and structures estimation as shown in Hartley & Zisserman for numerous applications, for instance; augmented reality, autonomous navigation, motion capture, remote sensing and object recognition among others. Nevertheless, this algorithm suffers some weaknesses in precision. In the present work, we extent the proposal in Arana-Daniel, Villaseñor, López-Franco, & Alanís that presents a new strategy using bio-inspired intelligence algorithm and Conformal Geometric Algebra, based in the object mapping paradigm, to overcome the accuracy problem in two-view Structure form motion algorithms. For More >

Displaying 1-10 on page 1 of 6. Per Page